It has been proposed that gonadotropin-releasing hormone (GnRH) plays an autocrine/paracrine regulatory role in mammalian and fish ovaries. The marine teleost gilthead seabream is an interesting model since, during the life span of the fish, gonadal tissues develop first as testes, which then regress allowing the development of ovarian follicles. Recent studies carried out in ovaries of the gilthead seabream have demonstrated that various GnRH transcripts as well as GnRH splicing variants are expressed. The mRNA level of several GnRH forms in the female and male areas of the switching gonad, and their possible role in this process, were further investigated. The results here reported show that sGnRH, cGnRH-II, and sbGnRH transcripts are locally expressed during gilthead seabream gonadal differentiation; the expression of the three GnRH forms was found to differ among the morphologically defined areas of the switching gonad, as demonstrated by applying reverse transcription-polymerase chain reaction (RT-PCR), together with in situ hybridization, and semiquantitative PCR analyses. Moreover, the hypothesis that GnRH forms may regulate testicular regression via an apoptotic mechanism was investigated by analyzing the different areas of switching gonads for caspase-3 activity as a measure of apoptosis. Our results showed a marked increase of caspase-3 activity in the area corresponding to the regressing testes in which a significant decrease of testosterone production was also found. The present findings demonstrate that the changes in the endogenous GnRH transcripts could be related with the gonadal differentiation in gilthead seabream, and that exogenous GnRH plays a role by stimulating apoptosis in the degenerating testis. © 2006 Wiley-Liss, Inc.

Role of gonadotropin-releasing hormone (GnRH) in the regulation of gonadal differentiation in the gilthead seabream (Sparus aurata)

Soverchia L.;Carotti M.;Mosconi G.;Cannella N.;
2007-01-01

Abstract

It has been proposed that gonadotropin-releasing hormone (GnRH) plays an autocrine/paracrine regulatory role in mammalian and fish ovaries. The marine teleost gilthead seabream is an interesting model since, during the life span of the fish, gonadal tissues develop first as testes, which then regress allowing the development of ovarian follicles. Recent studies carried out in ovaries of the gilthead seabream have demonstrated that various GnRH transcripts as well as GnRH splicing variants are expressed. The mRNA level of several GnRH forms in the female and male areas of the switching gonad, and their possible role in this process, were further investigated. The results here reported show that sGnRH, cGnRH-II, and sbGnRH transcripts are locally expressed during gilthead seabream gonadal differentiation; the expression of the three GnRH forms was found to differ among the morphologically defined areas of the switching gonad, as demonstrated by applying reverse transcription-polymerase chain reaction (RT-PCR), together with in situ hybridization, and semiquantitative PCR analyses. Moreover, the hypothesis that GnRH forms may regulate testicular regression via an apoptotic mechanism was investigated by analyzing the different areas of switching gonads for caspase-3 activity as a measure of apoptosis. Our results showed a marked increase of caspase-3 activity in the area corresponding to the regressing testes in which a significant decrease of testosterone production was also found. The present findings demonstrate that the changes in the endogenous GnRH transcripts could be related with the gonadal differentiation in gilthead seabream, and that exogenous GnRH plays a role by stimulating apoptosis in the degenerating testis. © 2006 Wiley-Liss, Inc.
2007
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/439959
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 26
social impact