Three metal-organic frameworks with the general formula Co(BPZX) (BPZX2- = 3-X-4,4′-bipyrazolate, X = H, NH2, NO2) constructed with ligands having different functional groups on the same skeleton have been employed as heterogeneous catalysts for aerobic liquid-phase oxidation of cumene with O2 as oxidant. O2 adsorption isotherms collected at pO2 = 1 atm and T = 195 and 273 K have cast light on the relative affinity of these catalysts for dioxygen. The highest gas uptake at 195 K is found for Co(BPZ) (3.2 mmol/g (10.1 wt % O2)), in line with its highest BET specific surface area (926 m2/g) in comparison with those of Co(BPZNH2) (317 m2/g) and Co(BPZNO2) (645 m2/g). The O2 isosteric heat of adsorption (Qst) trend follows the order Co(BPZ) > Co(BPZNH2) > Co(BPZNO2). Interestingly, the selectivity in the cumene oxidation products was found to be dependent on the tag present in the catalyst linker: While cumene hydroperoxide (CHP) is the main product obtained with Co(BPZ) (84% selectivity to CHP after 7 h, pO2 = 4 bar, and T = 363 K), further oxidation to 2-phenyl-2-propanol (PP) is observed in the presence of Co(BPZNH2) as the catalyst (69% selectivity to PP under the same experimental conditions).

Cobalt(II) Bipyrazolate Metal-Organic Frameworks as Heterogeneous Catalysts in Cumene Aerobic Oxidation: A Tag-Dependent Selectivity

Di Nicola, C;Pettinari, C;
2020-01-01

Abstract

Three metal-organic frameworks with the general formula Co(BPZX) (BPZX2- = 3-X-4,4′-bipyrazolate, X = H, NH2, NO2) constructed with ligands having different functional groups on the same skeleton have been employed as heterogeneous catalysts for aerobic liquid-phase oxidation of cumene with O2 as oxidant. O2 adsorption isotherms collected at pO2 = 1 atm and T = 195 and 273 K have cast light on the relative affinity of these catalysts for dioxygen. The highest gas uptake at 195 K is found for Co(BPZ) (3.2 mmol/g (10.1 wt % O2)), in line with its highest BET specific surface area (926 m2/g) in comparison with those of Co(BPZNH2) (317 m2/g) and Co(BPZNO2) (645 m2/g). The O2 isosteric heat of adsorption (Qst) trend follows the order Co(BPZ) > Co(BPZNH2) > Co(BPZNO2). Interestingly, the selectivity in the cumene oxidation products was found to be dependent on the tag present in the catalyst linker: While cumene hydroperoxide (CHP) is the main product obtained with Co(BPZ) (84% selectivity to CHP after 7 h, pO2 = 4 bar, and T = 363 K), further oxidation to 2-phenyl-2-propanol (PP) is observed in the presence of Co(BPZNH2) as the catalyst (69% selectivity to PP under the same experimental conditions).
2020
262
File in questo prodotto:
File Dimensione Formato  
Cobalt II Bipyrazolate Metal-Organic Frameworks as Heterogeneous Catalysts in Cumene Aerobic Oxidation A Tag-Dependent Selectivity _ POST PRINT.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 2.75 MB
Formato Adobe PDF
2.75 MB Adobe PDF Visualizza/Apri
nowacka-et-al-2020-cobalt(ii)-bipyrazolate-metal-organic-frameworks-as-heterogeneous-catalysts-in-cumene-aerobic.pdf

solo gestori di archivio

Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.19 MB
Formato Adobe PDF
4.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/439875
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 32
social impact