Nicergoline native crystals (Form I) were subjected to different grinding methods for 15, 30, 45, and 60 min: Method A, grinding at 20°C under air atmosphere; Method B, grinding in presence of liquid nitrogen under air atmosphere; Method C, grinding at 20°C under nitrogen atmosphere; and Method D, grinding in presence of liquid nitrogen under nitrogen atmosphere. Scanning electron microscopy, differential scanning calorimetry, X-ray powder diffractometry, thermogravimetry, and infrared spectroscopy were used to follow changes in the particle size and in crystalline structures. Batches from Methods A and C underwent partial amorphization immediately after grinding; Form II was obtained by heating these partially amorphous forms or after spontaneous crystallization after 1 and 5 months storage. Method B promoted the hydration of nicergoline to a monohydrate form. Batch D was stable under grinding and neither amorphization nor hydration were observed. The best intrinsic dissolution rate was that of metastable Form II, followed by Form I, while the worst was that of the Method B monohydrate form. The slowest particle dissolution was observed for hydrated particles, because of the lowest IDR, while the most rapid was exhibited by batch D, because of the very small particle size.
Changes in the Solid State of Nicergoline, a Poorly Soluble Drug, Under Different Grinding and Environmental Conditions: Effect on Polymorphism and Dissolution
Censi R.;Gigliobianco M. R.;Casadidio C.;Di Martino P.
2019-01-01
Abstract
Nicergoline native crystals (Form I) were subjected to different grinding methods for 15, 30, 45, and 60 min: Method A, grinding at 20°C under air atmosphere; Method B, grinding in presence of liquid nitrogen under air atmosphere; Method C, grinding at 20°C under nitrogen atmosphere; and Method D, grinding in presence of liquid nitrogen under nitrogen atmosphere. Scanning electron microscopy, differential scanning calorimetry, X-ray powder diffractometry, thermogravimetry, and infrared spectroscopy were used to follow changes in the particle size and in crystalline structures. Batches from Methods A and C underwent partial amorphization immediately after grinding; Form II was obtained by heating these partially amorphous forms or after spontaneous crystallization after 1 and 5 months storage. Method B promoted the hydration of nicergoline to a monohydrate form. Batch D was stable under grinding and neither amorphization nor hydration were observed. The best intrinsic dissolution rate was that of metastable Form II, followed by Form I, while the worst was that of the Method B monohydrate form. The slowest particle dissolution was observed for hydrated particles, because of the lowest IDR, while the most rapid was exhibited by batch D, because of the very small particle size.File | Dimensione | Formato | |
---|---|---|---|
J Pharmac Sci online ott2018.pdf
accesso aperto
Descrizione: Accepted manuscript
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
5.04 MB
Formato
Adobe PDF
|
5.04 MB | Adobe PDF | Visualizza/Apri |
J. Pharmac. Sci. 2019.pdf
solo gestori di archivio
Tipologia:
Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
7.23 MB
Formato
Adobe PDF
|
7.23 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.