Background: Pharmacological treatment approaches for eating disorders, such as binge eating disorder and bulimia nervosa, are currently limited. Methods and aims: Using a well-characterized animal model of binge eating, we investigated the epigenetic regulation of the A2A Adenosine Receptor (A2AAR) and dopaminergic D2 receptor (D2R) genes. Results: Gene expression analysis revealed a selective increase of both receptor mRNAs in the amygdaloid complex of stressed and restricted rats, which exhibited binge-like eating, when compared to non-stressed and non-restricted rats. Consistently, pyrosequencing analysis revealed a significant reduction of the percentage of DNA methylation but only at the A2AAR promoter region in rats showing binge-like behaviour compared to the control animals. Focusing thus on A2AAR agonist (VT 7) administration (which inhibited the episode of binge systemically at 0.1 mg/kg or intra-central amygdala (CeA) injection at 900 ng/side) induced a significant increase of A2AAR mRNA levels in restricted and stressed rats when compared to the control group. In addition, we observed a significant decrease in A2AAR mRNA levels in rats treated with the A2AAR antagonist (ANR 94) at 1 mg/kg. Consistent changes in the DNA methylation status of the A2AAR promoter were found in restricted and stressed rats after administration of VT 7 or ANR 94. Conclusion: We confirm the role of A2AAR in binge eating behaviours, and we underline the importance of epigenetic regulation of the A2AAR gene, possibly due to a compensatory mechanism to counteract the effect of binge eating. We suggest that A2AAR activation, inducing receptor gene up-regulation, could be relevant to reduction of food consumption.
Regulation of adenosine A2A receptor gene expression in a model of binge eating in the amygdaloid complex of female rats
Micioni Di Bonaventura M. V.;Pucci M.;Giusepponi M. E.;Lambertucci C.;Volpini R.;Micioni Di Bonaventura E.;Cifani C.
2019-01-01
Abstract
Background: Pharmacological treatment approaches for eating disorders, such as binge eating disorder and bulimia nervosa, are currently limited. Methods and aims: Using a well-characterized animal model of binge eating, we investigated the epigenetic regulation of the A2A Adenosine Receptor (A2AAR) and dopaminergic D2 receptor (D2R) genes. Results: Gene expression analysis revealed a selective increase of both receptor mRNAs in the amygdaloid complex of stressed and restricted rats, which exhibited binge-like eating, when compared to non-stressed and non-restricted rats. Consistently, pyrosequencing analysis revealed a significant reduction of the percentage of DNA methylation but only at the A2AAR promoter region in rats showing binge-like behaviour compared to the control animals. Focusing thus on A2AAR agonist (VT 7) administration (which inhibited the episode of binge systemically at 0.1 mg/kg or intra-central amygdala (CeA) injection at 900 ng/side) induced a significant increase of A2AAR mRNA levels in restricted and stressed rats when compared to the control group. In addition, we observed a significant decrease in A2AAR mRNA levels in rats treated with the A2AAR antagonist (ANR 94) at 1 mg/kg. Consistent changes in the DNA methylation status of the A2AAR promoter were found in restricted and stressed rats after administration of VT 7 or ANR 94. Conclusion: We confirm the role of A2AAR in binge eating behaviours, and we underline the importance of epigenetic regulation of the A2AAR gene, possibly due to a compensatory mechanism to counteract the effect of binge eating. We suggest that A2AAR activation, inducing receptor gene up-regulation, could be relevant to reduction of food consumption.File | Dimensione | Formato | |
---|---|---|---|
Regulation of adenosine A2A MICIONI 2019.pdf
solo gestori di archivio
Descrizione: Regulation A2A Micioni 2019
Tipologia:
Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
670.76 kB
Formato
Adobe PDF
|
670.76 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.