In this work, further structural investigations on the 8-amino-2-phenyl-6-aryl-1,2,4-triazolo[4,3-a]pyrazin-3-one series were carried out to achieve potent and selective human A2A adenosine receptor (AR) antagonists. Different ether and amide moieties were attached at the para-position of the 6-phenyl ring, thus leading to compounds 1-9 and 10-18, respectively. Most of these moieties contained terminal basic rings (pyrrolidine, morpholine, piperidine and substituted piperazines) which were thought to confer good physicochemical and drug-like properties. Compounds 11-16, bearing the amide linker, possessed high affinity and selectivity for the hA2A AR (Ki = 3.6-11.8 nM). Also derivatives 1-9, featuring an ether linker, preferentially targeted the hA2A AR but with lower affinity, compared to those of the relative amide compounds. Docking studies, carried out at the hA2A AR binding site, highlighted some crucial ligand-receptor interactions, particularly those provided by the appended substituent whose nature deeply affected hA2A AR affinity.

New 8-amino-1,2,4-triazolo[4,3-a]pyrazin-3-one derivatives. Evaluation of different moieties on the 6-aryl ring to obtain potent and selective human A2A adenosine receptor antagonists

Dal Ben, Diego;Marucci, Gabriella;Buccioni, Michela;Volpini, Rosaria;
2020-01-01

Abstract

In this work, further structural investigations on the 8-amino-2-phenyl-6-aryl-1,2,4-triazolo[4,3-a]pyrazin-3-one series were carried out to achieve potent and selective human A2A adenosine receptor (AR) antagonists. Different ether and amide moieties were attached at the para-position of the 6-phenyl ring, thus leading to compounds 1-9 and 10-18, respectively. Most of these moieties contained terminal basic rings (pyrrolidine, morpholine, piperidine and substituted piperazines) which were thought to confer good physicochemical and drug-like properties. Compounds 11-16, bearing the amide linker, possessed high affinity and selectivity for the hA2A AR (Ki = 3.6-11.8 nM). Also derivatives 1-9, featuring an ether linker, preferentially targeted the hA2A AR but with lower affinity, compared to those of the relative amide compounds. Docking studies, carried out at the hA2A AR binding site, highlighted some crucial ligand-receptor interactions, particularly those provided by the appended substituent whose nature deeply affected hA2A AR affinity.
File in questo prodotto:
File Dimensione Formato  
Bioorganic & Medicinal Chemistry Letters 30 (2020) 127126.pdf

solo gestori di archivio

Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.93 MB
Formato Adobe PDF
2.93 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/435733
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact