The Podolia region is located along the western border of the Eastern European Craton, which is also known as Ukrainian Shield. From the Ordovician to the Miocene, this area formed part of an epicontinental basin system. In order to investigate the effects of orogenic cycles occurring along the plate margin, a multi‐disciplinary approach was used in this study. Paleotemperature analysis and low‐temperature thermochronometry were combined with stratigraphic data to obtain a burial model for the Paleozoic succession exposed in the study area. Maximum burial for Silurian and Devonian rocks occurred during the Devonian and Early Carboniferous at depths of 4–5 km, as constrained by vitrinite reflectance and illite content in mixed illite‐smectite layers. Thermochronometric data indicate that exhumation through the 45–120 °C temperature range took place between the Late Triassic and the Early Jurassic, and that no significant burial occurred afterwards (temperatures characterising the stratigraphically lowermost units remaining below ca. 60 °C). These results point to a major exhumation event coeval with the Cimmerian orogenesis, which took place a few hundreds of kilometres away from the study area. On the other hand, no significant effect of the Alpine orogenesis was recorded, although the collisional front was located <100 km from the Podolia region. This work shows how paleothermal and thermochronometric analyses can be successfully integrated with stratigraphic data to reconstruct the burial history, and how the burial history of a basin located on a plate margin can, in some cases, be independent from the distance of the margin from the collisional fronts.
Burial and exhumation of the western border of the Ukrainian Shield (Podolia): a multi-disciplinary approach
Mazzoli, Stefano
2018-01-01
Abstract
The Podolia region is located along the western border of the Eastern European Craton, which is also known as Ukrainian Shield. From the Ordovician to the Miocene, this area formed part of an epicontinental basin system. In order to investigate the effects of orogenic cycles occurring along the plate margin, a multi‐disciplinary approach was used in this study. Paleotemperature analysis and low‐temperature thermochronometry were combined with stratigraphic data to obtain a burial model for the Paleozoic succession exposed in the study area. Maximum burial for Silurian and Devonian rocks occurred during the Devonian and Early Carboniferous at depths of 4–5 km, as constrained by vitrinite reflectance and illite content in mixed illite‐smectite layers. Thermochronometric data indicate that exhumation through the 45–120 °C temperature range took place between the Late Triassic and the Early Jurassic, and that no significant burial occurred afterwards (temperatures characterising the stratigraphically lowermost units remaining below ca. 60 °C). These results point to a major exhumation event coeval with the Cimmerian orogenesis, which took place a few hundreds of kilometres away from the study area. On the other hand, no significant effect of the Alpine orogenesis was recorded, although the collisional front was located <100 km from the Podolia region. This work shows how paleothermal and thermochronometric analyses can be successfully integrated with stratigraphic data to reconstruct the burial history, and how the burial history of a basin located on a plate margin can, in some cases, be independent from the distance of the margin from the collisional fronts.File | Dimensione | Formato | |
---|---|---|---|
170 Schito et al 2017 Bas Res.pdf
solo gestori di archivio
Descrizione: Articolo principale
Tipologia:
Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.45 MB
Formato
Adobe PDF
|
2.45 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.