Let B be a commutative Bézout domain and let MSpec(B) be the maximal spectrum of B. We obtain a Feferman-Vaught type theorem for the class Mod-B of all (right) B-modules. We analyze the definable sets in terms, on the one hand, of the definable sets in the classes Mod-BM, where BM ranges over the localizations of B at M, M ∈ MSpec(B), and on the other hand, of the constructible subsets of MSpec(B). This allows us to derive decidability results for the class Mod-B, in particular when B is the ring Z of algebraic integers or one of the rings Z ∩ R, Z ∩ Qp.

Bézout domains and lattice-valued modules

L'Innocente, S;
2020-01-01

Abstract

Let B be a commutative Bézout domain and let MSpec(B) be the maximal spectrum of B. We obtain a Feferman-Vaught type theorem for the class Mod-B of all (right) B-modules. We analyze the definable sets in terms, on the one hand, of the definable sets in the classes Mod-BM, where BM ranges over the localizations of B at M, M ∈ MSpec(B), and on the other hand, of the constructible subsets of MSpec(B). This allows us to derive decidability results for the class Mod-B, in particular when B is the ring Z of algebraic integers or one of the rings Z ∩ R, Z ∩ Qp.
2020
262
File in questo prodotto:
File Dimensione Formato  
LP2020 arxiv.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 308.75 kB
Formato Adobe PDF
308.75 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/430942
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact