Let B be a commutative Bézout domain and let MSpec(B) be the maximal spectrum of B. We obtain a Feferman-Vaught type theorem for the class Mod-B of all (right) B-modules. We analyze the definable sets in terms, on the one hand, of the definable sets in the classes Mod-BM, where BM ranges over the localizations of B at M, M ∈ MSpec(B), and on the other hand, of the constructible subsets of MSpec(B). This allows us to derive decidability results for the class Mod-B, in particular when B is the ring Z of algebraic integers or one of the rings Z ∩ R, Z ∩ Qp.
Bézout domains and lattice-valued modules
L'Innocente, S;
2020-01-01
Abstract
Let B be a commutative Bézout domain and let MSpec(B) be the maximal spectrum of B. We obtain a Feferman-Vaught type theorem for the class Mod-B of all (right) B-modules. We analyze the definable sets in terms, on the one hand, of the definable sets in the classes Mod-BM, where BM ranges over the localizations of B at M, M ∈ MSpec(B), and on the other hand, of the constructible subsets of MSpec(B). This allows us to derive decidability results for the class Mod-B, in particular when B is the ring Z of algebraic integers or one of the rings Z ∩ R, Z ∩ Qp.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
LP2020 arxiv.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
DRM non definito
Dimensione
308.75 kB
Formato
Adobe PDF
|
308.75 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.