The projective quantum Monte Carlo (PQMC) algorithms are among the most powerful computational techniques to simulate the ground-state properties of quantum many-body systems. However, they are efficient only if a sufficiently accurate trial wave function is used to guide the simulation. In the standard approach, this guiding wave function is obtained in a separate simulation that performs a variational minimization Here we show how to perform PQMC simulations guided by an adaptive wave function based on a restricted Boltzmann machine. This adaptive wave function is optimized along the PQMC simulation via unsupervised machine learning, avoiding the need of a separate variational optimization. As a byproduct, this technique provides an accurate ansatz for the ground-state wave function, which is obtained by minimizing the Kullback-Leibler divergence with respect to the PQMC samples, rather than by minimizing the energy expectation value as in standard variational optimizations. The high accuracy of this self-learning PQMC technique is demonstrated for a paradigmatic sign-problem-free model, namely, the ferromagnetic quantum Ising chain, showing very precise agreement with the predictions of the Jordan-Wigner theory and of loop quantum Monte Carlo simulations performed in the low-temperature limit.

Self-learning projective quantum Monte Carlo simulations guided by restricted Boltzmann machines

S. Pilati;P. Pieri
2019-01-01

Abstract

The projective quantum Monte Carlo (PQMC) algorithms are among the most powerful computational techniques to simulate the ground-state properties of quantum many-body systems. However, they are efficient only if a sufficiently accurate trial wave function is used to guide the simulation. In the standard approach, this guiding wave function is obtained in a separate simulation that performs a variational minimization Here we show how to perform PQMC simulations guided by an adaptive wave function based on a restricted Boltzmann machine. This adaptive wave function is optimized along the PQMC simulation via unsupervised machine learning, avoiding the need of a separate variational optimization. As a byproduct, this technique provides an accurate ansatz for the ground-state wave function, which is obtained by minimizing the Kullback-Leibler divergence with respect to the PQMC samples, rather than by minimizing the energy expectation value as in standard variational optimizations. The high accuracy of this self-learning PQMC technique is demonstrated for a paradigmatic sign-problem-free model, namely, the ferromagnetic quantum Ising chain, showing very precise agreement with the predictions of the Jordan-Wigner theory and of loop quantum Monte Carlo simulations performed in the low-temperature limit.
2019
File in questo prodotto:
File Dimensione Formato  
PhysRevE.100.043301.pdf

accesso aperto

Descrizione: Versione editoriale articolo
Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 637.45 kB
Formato Adobe PDF
637.45 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/429886
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
social impact