Liposomes are lamellar nanovesicles made of phospholipids of a great interest as drug delivery carriers, able to encapsulate both hydrophilic and lipophilic compounds. Some liposomal formulations have reached the market, including the doxorubicin loaded PEGylated liposomal dispersion Doxil®. The aim of the work was to investigate the possibility of concentrating liposomes through the ultrafiltration process under nitrogen pressure, using Doxil® formulation as a model. The concentrated liposomal dispersions (4x and 8x) obtained from Doxil® were characterised in terms of size evolution (dynamic light scattering), morphology (cryo-TEM) and thermal behaviour (microcalorimetry, mDSC and high-resolution ultrasonic spectroscopy, HR-US) and compared to the unloaded liposomes of the same composition. The ultrafiltration process resulted to be effective in concentrating both loaded and unloaded liposomal dispersions, which showed a particle size and thermal properties comparable to those of the non concentrated ones. Moreover, all liposomal dispersions did not show any remarkable variation in term of particle size distribution and morphology for at least 8 weeks after concentration. Altogether, results demonstrated the effectiveness in using ultrafiltration as a methodology to concentrate both loaded and unloaded liposomes without affecting the quality of the processed product.

Effect of the concentration process on unloaded and doxorubicin loaded liposomal dispersions

Perinelli, Diego Romano;Cespi, Marco;Bonacucina, Giulia;Palmieri, Giovanni Filippo
2019-01-01

Abstract

Liposomes are lamellar nanovesicles made of phospholipids of a great interest as drug delivery carriers, able to encapsulate both hydrophilic and lipophilic compounds. Some liposomal formulations have reached the market, including the doxorubicin loaded PEGylated liposomal dispersion Doxil®. The aim of the work was to investigate the possibility of concentrating liposomes through the ultrafiltration process under nitrogen pressure, using Doxil® formulation as a model. The concentrated liposomal dispersions (4x and 8x) obtained from Doxil® were characterised in terms of size evolution (dynamic light scattering), morphology (cryo-TEM) and thermal behaviour (microcalorimetry, mDSC and high-resolution ultrasonic spectroscopy, HR-US) and compared to the unloaded liposomes of the same composition. The ultrafiltration process resulted to be effective in concentrating both loaded and unloaded liposomal dispersions, which showed a particle size and thermal properties comparable to those of the non concentrated ones. Moreover, all liposomal dispersions did not show any remarkable variation in term of particle size distribution and morphology for at least 8 weeks after concentration. Altogether, results demonstrated the effectiveness in using ultrafiltration as a methodology to concentrate both loaded and unloaded liposomes without affecting the quality of the processed product.
2019
File in questo prodotto:
File Dimensione Formato  
2019_Effect of the concentration process on unloaded and doxorubicin loadedliposomal dispersions.pdf

solo gestori di archivio

Descrizione: Articolo
Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.14 MB
Formato Adobe PDF
3.14 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/429200
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact