Using continuous-space quantum Monte Carlo methods, we investigate the zero-temperature ferromagnetic behavior of a two-component repulsive Fermi gas under the influence of periodic potentials that describe the effect of a simple-cubic optical lattice. Simulations are performed with balanced and with imbalanced components, including the case of a single impurity immersed in a polarized Fermi sea (repulsive polaron). For an intermediate density below half filling, we locate the transitions between the paramagnetic, and the partially and fully ferromagnetic phases. As the intensity of the optical lattice increases, the ferromagnetic instability takes place at weaker interactions, indicating a possible route to observe ferromagnetism in experiments performed with ultracold atoms. We compare our findings with previous predictions based on the standard computational method used in material science, namely density functional theory, and with results based on tight-binding models.

Ferromagnetism of a repulsive atomic Fermi gas in an optical lattice: a quantum Monte Carlo study

Pilati, S;
2014-01-01

Abstract

Using continuous-space quantum Monte Carlo methods, we investigate the zero-temperature ferromagnetic behavior of a two-component repulsive Fermi gas under the influence of periodic potentials that describe the effect of a simple-cubic optical lattice. Simulations are performed with balanced and with imbalanced components, including the case of a single impurity immersed in a polarized Fermi sea (repulsive polaron). For an intermediate density below half filling, we locate the transitions between the paramagnetic, and the partially and fully ferromagnetic phases. As the intensity of the optical lattice increases, the ferromagnetic instability takes place at weaker interactions, indicating a possible route to observe ferromagnetism in experiments performed with ultracold atoms. We compare our findings with previous predictions based on the standard computational method used in material science, namely density functional theory, and with results based on tight-binding models.
2014
File in questo prodotto:
File Dimensione Formato  
1308.1672.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 283.97 kB
Formato Adobe PDF
283.97 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/427505
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 37
social impact