We consider the effect of geometric confinement on the steady-state properties of a one-dimensional active suspension subject to thermal noise. The random active force is modeled by an Ornstein-Uhlenbeck process and the system is studied both numerically, by integrating the Langevin governing equations, and analytically by solving the associated Fokker-Planck equation under suitable approximations. The comparison between the two approaches displays a fairly good agreement and in particular, we show that the Fokker-Planck approach can predict the structure of the system both in the wall region and in the bulk-like region where the surface forces are negligible. The simultaneous presence of thermal noise and active forces determines the formation of a layer, extending from the walls towards the bulk, where the system exhibits polar order. We relate the presence of such ordering to the mechanical pressure exerted on the container's walls and show how it depends on the separation of the boundaries and determines a Casimir-like attractive force mediated by the active suspension.

Active particles under confinement and effective force generation among surfaces

Marini Bettolo Marconi, Umberto
2018-01-01

Abstract

We consider the effect of geometric confinement on the steady-state properties of a one-dimensional active suspension subject to thermal noise. The random active force is modeled by an Ornstein-Uhlenbeck process and the system is studied both numerically, by integrating the Langevin governing equations, and analytically by solving the associated Fokker-Planck equation under suitable approximations. The comparison between the two approaches displays a fairly good agreement and in particular, we show that the Fokker-Planck approach can predict the structure of the system both in the wall region and in the bulk-like region where the surface forces are negligible. The simultaneous presence of thermal noise and active forces determines the formation of a layer, extending from the walls towards the bulk, where the system exhibits polar order. We relate the presence of such ordering to the mechanical pressure exerted on the container's walls and show how it depends on the separation of the boundaries and determines a Casimir-like attractive force mediated by the active suspension.
2018
262
File in questo prodotto:
File Dimensione Formato  
c8sm01840e.pdf

solo gestori di archivio

Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.14 MB
Formato Adobe PDF
3.14 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
bettolo.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/426833
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 72
  • ???jsp.display-item.citation.isi??? 71
social impact