In this paper, we prove a quantum union bound that is relevant when performing a sequence of binary-outcome quantum measurements on a quantum state. The quantum union bound proved here involves a tunable parameter that can be optimized, and this tunable parameter plays a similar role to a parameter involved in the Hayashi-Nagaoka inequality (Hayashi & Nagaoka 2003 IEEE Trans. Inf. Theory49, 1753-1768. (doi:10.1109/TIT.2003.813556)), used often in quantum information theory when analysing the error probability of a square-root measurement. An advantage of the proof delivered here is that it is elementary, relying only on basic properties of projectors, Pythagoras' theorem, and the Cauchy-Schwarz inequality. As a non-trivial application of our quantum union bound, we prove that a sequential decoding strategy for classical communication over a quantum channel achieves a lower bound on the channel's second-order coding rate. This demonstrates the advantage of our quantum union bound in the non-asymptotic regime, in which a communication channel is called a finite number of times. We expect that the bound will find a range of applications in quantum communication theory, quantum algorithms and quantum complexity theory.

Union bound for quantum information processing

Mancini, Stefano;
2019-01-01

Abstract

In this paper, we prove a quantum union bound that is relevant when performing a sequence of binary-outcome quantum measurements on a quantum state. The quantum union bound proved here involves a tunable parameter that can be optimized, and this tunable parameter plays a similar role to a parameter involved in the Hayashi-Nagaoka inequality (Hayashi & Nagaoka 2003 IEEE Trans. Inf. Theory49, 1753-1768. (doi:10.1109/TIT.2003.813556)), used often in quantum information theory when analysing the error probability of a square-root measurement. An advantage of the proof delivered here is that it is elementary, relying only on basic properties of projectors, Pythagoras' theorem, and the Cauchy-Schwarz inequality. As a non-trivial application of our quantum union bound, we prove that a sequential decoding strategy for classical communication over a quantum channel achieves a lower bound on the channel's second-order coding rate. This demonstrates the advantage of our quantum union bound in the non-asymptotic regime, in which a communication channel is called a finite number of times. We expect that the bound will find a range of applications in quantum communication theory, quantum algorithms and quantum complexity theory.
2019
File in questo prodotto:
File Dimensione Formato  
rspa-20180612.pdf

solo gestori di archivio

Descrizione: PDF
Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 321.91 kB
Formato Adobe PDF
321.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Union bound for quantum information processing.pdf

accesso aperto

Tipologia: Versione Editoriale
Licenza: DRM non definito
Dimensione 395.66 kB
Formato Adobe PDF
395.66 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/426030
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 12
social impact