There is evidence that polycyclic aromatic hydrocarbons (PAHs) are consistently the predominant organic contaminants in concentration found in loggerhead sea turtles (Caretta caretta) from the North and Central Adriatic Sea. Hence this study investigates the PAH toxicity to loggerheads by using a particular set of genes [i.e. CYP1B, CAT, GPX, GSTT1, SOD3, DNMT1, Epoxide hydrolase 1 (EPHX1), Poly (ADP-ribose) polymerase 1 (PARP1), Lamin-A/C isoform 3 (LMNA), Talin 1 (TLN1), Annexin A1 (ANXA1)] whose altered expression is potentially dependent on and specific for the PAH-related mechanism of action. Twenty healthy juvenile loggerheads were thus divided into high and low exposure groups (mean of ΣPAHs: 80.34 ng mL-1 vs. 8.84 ng mL-1, P < 0.0001) according to the median split of ΣPAHs. Interestingly, we found that the whole blood mRNA levels of each gene biomarker tested were significantly increased in high PAH-exposed turtles thus proving to be useful for the biological monitoring of PAH toxicity and hematotoxicity in sea turtles.

Gene expression profiles of putative biomarkers in juvenile loggerhead sea turtles (Caretta caretta) exposed to polycyclic aromatic hydrocarbons

Cocci, Paolo;Mosconi, Gilberto;Palermo, Francesco Alessandro
2019-01-01

Abstract

There is evidence that polycyclic aromatic hydrocarbons (PAHs) are consistently the predominant organic contaminants in concentration found in loggerhead sea turtles (Caretta caretta) from the North and Central Adriatic Sea. Hence this study investigates the PAH toxicity to loggerheads by using a particular set of genes [i.e. CYP1B, CAT, GPX, GSTT1, SOD3, DNMT1, Epoxide hydrolase 1 (EPHX1), Poly (ADP-ribose) polymerase 1 (PARP1), Lamin-A/C isoform 3 (LMNA), Talin 1 (TLN1), Annexin A1 (ANXA1)] whose altered expression is potentially dependent on and specific for the PAH-related mechanism of action. Twenty healthy juvenile loggerheads were thus divided into high and low exposure groups (mean of ΣPAHs: 80.34 ng mL-1 vs. 8.84 ng mL-1, P < 0.0001) according to the median split of ΣPAHs. Interestingly, we found that the whole blood mRNA levels of each gene biomarker tested were significantly increased in high PAH-exposed turtles thus proving to be useful for the biological monitoring of PAH toxicity and hematotoxicity in sea turtles.
2019
File in questo prodotto:
File Dimensione Formato  
ENVPOL 2019.pdf

solo gestori di archivio

Descrizione: Environmental Pollution 2019
Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.41 MB
Formato Adobe PDF
1.41 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/425988
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact