A tin-decorated reduced graphene oxide, originally developed for lithium-ion batteries, has been investigated as an anode in sodium-ion batteries. The composite has been synthetized through microwave reduction of poly acrylic acid functionalized graphene oxide and a tin oxide organic precursor. The final product morphology reveals a composite in which Sn and SnO₂ nanoparticles are homogenously distributed into the reduced graphene oxide matrix. The XRD confirms the initial simultaneous presence of Sn and SnO₂ particles. SnRGO electrodes, prepared using Super-P carbon as conducting additive and Pattex PL50 as aqueous binder, were investigated in a sodium metal cell. The Sn-RGO showed a high irreversible first cycle capacity: only 52% of the first cycle discharge capacity was recovered in the following charge cycle. After three cycles, a stable SEI layer was developed and the cell began to work reversibly: the practical reversible capability of the material was 170 mA·h·g-1. Subsequently, a material of formula NaLi0.2Ni0.25Mn0.75O was synthesized by solid-state chemistry. It was found that the cathode showed a high degree of crystallization with hexagonal P2-structure, space group P6₃/mmc. The material was electrochemically characterized in sodium cell: the discharge-specific capacity increased with cycling, reaching at the end of the fifth cycle a capacity of 82 mA·h·g-1. After testing as a secondary cathode in a sodium metal cell, NaLi0.2Ni0.25Mn0.75O was coupled with SnRGO anode to form a sodium-ion cell. The electrochemical characterization allowed confirmation that the battery was able to reversibly cycle sodium ions. The cell's power response was evaluated by discharging the SIB at different rates. At the lower discharge rate, the anode capacity approached the rated value (170 mA·h·g-1). By increasing the discharge current, the capacity decreased but the decline was not so pronounced: the anode discharged about 80% of the rated capacity at 1 C rate and more than 50% at 5 C rate.

Tin-Decorated Reduced Graphene Oxide and NaLi0.2Ni0.25Mn0.75O as Electrode Materials for Sodium-Ion Batteries

Maroni, Fabio;Birrozzi, Agnese;Nobili, Francesco
2019-01-01

Abstract

A tin-decorated reduced graphene oxide, originally developed for lithium-ion batteries, has been investigated as an anode in sodium-ion batteries. The composite has been synthetized through microwave reduction of poly acrylic acid functionalized graphene oxide and a tin oxide organic precursor. The final product morphology reveals a composite in which Sn and SnO₂ nanoparticles are homogenously distributed into the reduced graphene oxide matrix. The XRD confirms the initial simultaneous presence of Sn and SnO₂ particles. SnRGO electrodes, prepared using Super-P carbon as conducting additive and Pattex PL50 as aqueous binder, were investigated in a sodium metal cell. The Sn-RGO showed a high irreversible first cycle capacity: only 52% of the first cycle discharge capacity was recovered in the following charge cycle. After three cycles, a stable SEI layer was developed and the cell began to work reversibly: the practical reversible capability of the material was 170 mA·h·g-1. Subsequently, a material of formula NaLi0.2Ni0.25Mn0.75O was synthesized by solid-state chemistry. It was found that the cathode showed a high degree of crystallization with hexagonal P2-structure, space group P6₃/mmc. The material was electrochemically characterized in sodium cell: the discharge-specific capacity increased with cycling, reaching at the end of the fifth cycle a capacity of 82 mA·h·g-1. After testing as a secondary cathode in a sodium metal cell, NaLi0.2Ni0.25Mn0.75O was coupled with SnRGO anode to form a sodium-ion cell. The electrochemical characterization allowed confirmation that the battery was able to reversibly cycle sodium ions. The cell's power response was evaluated by discharging the SIB at different rates. At the lower discharge rate, the anode capacity approached the rated value (170 mA·h·g-1). By increasing the discharge current, the capacity decreased but the decline was not so pronounced: the anode discharged about 80% of the rated capacity at 1 C rate and more than 50% at 5 C rate.
2019
262
File in questo prodotto:
File Dimensione Formato  
materials-12-01074.pdf

accesso aperto

Tipologia: Versione Editoriale
Licenza: PUBBLICO - Creative Commons
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/425784
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact