We investigate the use of variational wave functions that mimic stochastic recurrent neural networks, specifically, unrestricted Boltzmann machines, as guiding functions in projective quantum Monte Carlo (PQMC) simulations of quantum spin models. As a preliminary step, we investigate the accuracy of such unrestricted neural network states as variational Ansatze for the ground state of the ferromagnetic quantum Ising chain. We find that by optimizing just three variational parameters, independently on the system size, accurate ground-state energies are obtained, comparable to those previously obtained using restricted Boltzmann machines with few variational parameters per spin. Chiefly, we show that if one uses optimized unrestricted neural network states as guiding functions for importance sampling, the efficiency of the PQMC algorithms is greatly enhanced, drastically reducing the most relevant systematic bias, namely, the one due to the finite random-walker population. The scaling of the computational cost with the system size changes from the exponential scaling characteristic of PQMC simulations performed without importance sampling, to a polynomial scaling, apparently even at the ferromagnetic quantum critical point. The important role of the protocol chosen to sample hidden-spin configurations, in particular at the critical point, is analyzed. We discuss the implications of these findings for what concerns the problem of simulating adiabatic quantum optimization using stochastic algorithms on classical computers.

Projective quantum Monte Carlo simulations guided by unrestricted neural network states

S. Pilati
2018-01-01

Abstract

We investigate the use of variational wave functions that mimic stochastic recurrent neural networks, specifically, unrestricted Boltzmann machines, as guiding functions in projective quantum Monte Carlo (PQMC) simulations of quantum spin models. As a preliminary step, we investigate the accuracy of such unrestricted neural network states as variational Ansatze for the ground state of the ferromagnetic quantum Ising chain. We find that by optimizing just three variational parameters, independently on the system size, accurate ground-state energies are obtained, comparable to those previously obtained using restricted Boltzmann machines with few variational parameters per spin. Chiefly, we show that if one uses optimized unrestricted neural network states as guiding functions for importance sampling, the efficiency of the PQMC algorithms is greatly enhanced, drastically reducing the most relevant systematic bias, namely, the one due to the finite random-walker population. The scaling of the computational cost with the system size changes from the exponential scaling characteristic of PQMC simulations performed without importance sampling, to a polynomial scaling, apparently even at the ferromagnetic quantum critical point. The important role of the protocol chosen to sample hidden-spin configurations, in particular at the critical point, is analyzed. We discuss the implications of these findings for what concerns the problem of simulating adiabatic quantum optimization using stochastic algorithms on classical computers.
File in questo prodotto:
File Dimensione Formato  
1809.03562.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 264.31 kB
Formato Adobe PDF
264.31 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/425323
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact