The design of composite components in the aerospace industry often includes structural discontinuities, such as cutouts, for functional requirements like ventilation, tunnel passage, maintenance and repair. The presence of cutout holes leads to complicated stress concentrations with a substantial reduction in structural stability and strength of the resulting composites. It is known that reinforcing with additional material at the cutout zones can extend the damage tolerance of a structure, therefore maintaining structural integrity and load carrying capacity. This study focuses on the experimental investigation of the tensile behavior and failure characteristics of stiffened glass/epoxy composite laminates, with cutouts, under acoustic emission monitoring. The progressive failure mechanisms of laminates with cutouts and the potential benefits of additionally dropped reinforcements are evaluated under tensile loading. The additional reinforcements were provided in either a step-like or as a simultaneous drop-off sequence between adjacent continuous plies. Results showed that adding ply drop reinforcements at the location of the cutout hole improves the stiffness, strength, and also prolongs the life of the composite laminates. It is also observed that step-like ply drop arrangements performed more effectively than simultaneously dropped configurations. The location and extent of damage identified by microscopic images correlated well with the acoustic emission results.

Damage characterization of stiffened glass-epoxy laminates under tensile loading with acoustic emission monitoring

Carlo Santulli
2018-01-01

Abstract

The design of composite components in the aerospace industry often includes structural discontinuities, such as cutouts, for functional requirements like ventilation, tunnel passage, maintenance and repair. The presence of cutout holes leads to complicated stress concentrations with a substantial reduction in structural stability and strength of the resulting composites. It is known that reinforcing with additional material at the cutout zones can extend the damage tolerance of a structure, therefore maintaining structural integrity and load carrying capacity. This study focuses on the experimental investigation of the tensile behavior and failure characteristics of stiffened glass/epoxy composite laminates, with cutouts, under acoustic emission monitoring. The progressive failure mechanisms of laminates with cutouts and the potential benefits of additionally dropped reinforcements are evaluated under tensile loading. The additional reinforcements were provided in either a step-like or as a simultaneous drop-off sequence between adjacent continuous plies. Results showed that adding ply drop reinforcements at the location of the cutout hole improves the stiffness, strength, and also prolongs the life of the composite laminates. It is also observed that step-like ply drop arrangements performed more effectively than simultaneously dropped configurations. The location and extent of damage identified by microscopic images correlated well with the acoustic emission results.
2018
File in questo prodotto:
File Dimensione Formato  
160_Damage characterization of stiffened glass-epoxy laminates under tensile loading with acoustic emission monitoring.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 4.33 MB
Formato Adobe PDF
4.33 MB Adobe PDF Visualizza/Apri
Arumugam, Saravanakumar, Santulli - Composites Part B, 2018 vol. 147 pp. 22-32.pdf

solo gestori di archivio

Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 5.92 MB
Formato Adobe PDF
5.92 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/425275
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 21
social impact