The Vlasov-Poisson system, modeling the evolution of non-collisional plasmas in the electrostatic limit, is approx- imated by a semi-Lagrangian technique. Spectral methods of periodic type are implemented through a collocation approach. Groups of particles are represented by the Fourier Lagrangian basis and evolve, for a single timestep, along an high-order accurate representation of the local characteristic lines. The time-advancing technique is based on truncated Taylor series that can be, in principle, of any order of accuracy. A variant is obtained by coupling the phase space discretization with high-order accurate Backward Differentiation Formulas (BDF). At each timestep, particle displacements are reinterpolated and expressed in the original basis to guarantee the order of accuracy in all the variables at relatively low costs. Thus, these techniques combine the excellent features of spectral approx- imations with high-order time integration. The resulting method has excellent conservation properties. Indeed, it can be proven that the total number of particles, proportional to the total mass and charge, is conserved up to the machine precision. Series of numerical experiments are performed in order to assess the real performance. In particular, comparisons with standard benchmarks are examined.

Arbitrary-Order Time-Accurate Semi-Lagrangian Spectral Approximations of the Vlasov-Poisson System

Fatone, L.
;
2019-01-01

Abstract

The Vlasov-Poisson system, modeling the evolution of non-collisional plasmas in the electrostatic limit, is approx- imated by a semi-Lagrangian technique. Spectral methods of periodic type are implemented through a collocation approach. Groups of particles are represented by the Fourier Lagrangian basis and evolve, for a single timestep, along an high-order accurate representation of the local characteristic lines. The time-advancing technique is based on truncated Taylor series that can be, in principle, of any order of accuracy. A variant is obtained by coupling the phase space discretization with high-order accurate Backward Differentiation Formulas (BDF). At each timestep, particle displacements are reinterpolated and expressed in the original basis to guarantee the order of accuracy in all the variables at relatively low costs. Thus, these techniques combine the excellent features of spectral approx- imations with high-order time integration. The resulting method has excellent conservation properties. Indeed, it can be proven that the total number of particles, proportional to the total mass and charge, is conserved up to the machine precision. Series of numerical experiments are performed in order to assess the real performance. In particular, comparisons with standard benchmarks are examined.
2019
262
File in questo prodotto:
File Dimensione Formato  
JOURNAL OF COMPUTATIONAL PHYSICS.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 2.14 MB
Formato Adobe PDF
2.14 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/423730
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact