We review some recent results on existence and regularity of Monge-Ampère exhaustions on the smoothly bounded strongly pseudoconvex domains, which admit at least one such exhaustion of sufficiently high regularity. A main consequence of our results is the fact that the Kobayashi pseudo-metric on an appropriate open subset of each of the above domains is actually a smooth Finsler metric. The class of domains to which our result apply is very large. It includes for instance all smoothly bounded strongly pseudoconvex complete circular domains and all their sufficiently small deformations.

Regularity of Kobayashi Metric

A. Spiro
2018-01-01

Abstract

We review some recent results on existence and regularity of Monge-Ampère exhaustions on the smoothly bounded strongly pseudoconvex domains, which admit at least one such exhaustion of sufficiently high regularity. A main consequence of our results is the fact that the Kobayashi pseudo-metric on an appropriate open subset of each of the above domains is actually a smooth Finsler metric. The class of domains to which our result apply is very large. It includes for instance all smoothly bounded strongly pseudoconvex complete circular domains and all their sufficiently small deformations.
2018
978-981-13-1671-5
273
File in questo prodotto:
File Dimensione Formato  
Patrizio G., Spiro A., 2018 - Regularity of Kobayashi Metric. Geometric Complex Analysis, pp. 335–349.pdf

solo gestori di archivio

Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 795.76 kB
Formato Adobe PDF
795.76 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2018_Book matter_GeometricComplexAnalysis.pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: DRM non definito
Dimensione 3.72 MB
Formato Adobe PDF
3.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/422139
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact