The properties are considered in detail of a nonlocal (integral) equation for the superconducting gap parameter, which is obtained by a coarse-graining procedure applied to the Bogoliubov-de Gennes (BdG) equations over the whole coupling-versus-temperature phase diagram associated with the superfluid phase. It is found that the limiting size of the coarse-graining procedure, which is dictated by the range of the kernel of this integral equation, corresponds to the size of the Cooper pairs over the whole coupling-versus-temperature phase diagram up to the critical temperature, even when Cooper pairs turn into composite bosons on the BEC side of the BCS-BEC crossover. A practical method is further implemented to solve numerically this integral equation in an efficient way, which is based on a novel algorithm for calculating the Fourier transforms. Application of this method to the case of an isolated vortex, throughout the BCS-BEC crossover and for all temperatures in the superfluid phase, helps clarifying the nature of the length scales associated with a single vortex and the kinds of details that are in practice disposed off by the coarse-graining procedure on the BdG equations.
Nonlocal equation for the superconducting gap parameter
Simonucci, S.;Strinati Calvanese, G.
2017-01-01
Abstract
The properties are considered in detail of a nonlocal (integral) equation for the superconducting gap parameter, which is obtained by a coarse-graining procedure applied to the Bogoliubov-de Gennes (BdG) equations over the whole coupling-versus-temperature phase diagram associated with the superfluid phase. It is found that the limiting size of the coarse-graining procedure, which is dictated by the range of the kernel of this integral equation, corresponds to the size of the Cooper pairs over the whole coupling-versus-temperature phase diagram up to the critical temperature, even when Cooper pairs turn into composite bosons on the BEC side of the BCS-BEC crossover. A practical method is further implemented to solve numerically this integral equation in an efficient way, which is based on a novel algorithm for calculating the Fourier transforms. Application of this method to the case of an isolated vortex, throughout the BCS-BEC crossover and for all temperatures in the superfluid phase, helps clarifying the nature of the length scales associated with a single vortex and the kinds of details that are in practice disposed off by the coarse-graining procedure on the BdG equations.File | Dimensione | Formato | |
---|---|---|---|
PhysRevB.96.054502.pdf
solo gestori di archivio
Tipologia:
Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.29 MB
Formato
Adobe PDF
|
1.29 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.