We provide algebraic conditions ensuring the decidability of the theory of modules over effectively given Prüfer (in particular Bézout) domains with infinite residue fields in terms of a suitable generalization of the prime radical relation. For Bézout domains these conditions are also necessary.

DECIDABILITY OF THE THEORY OF MODULES OVER PRÜFER DOMAINS WITH INFINITE RESIDUE FIELDS

GREGORY, LORNA ANNE;L’INNOCENTE, SONIA;TOFFALORI, CARLO
2018-01-01

Abstract

We provide algebraic conditions ensuring the decidability of the theory of modules over effectively given Prüfer (in particular Bézout) domains with infinite residue fields in terms of a suitable generalization of the prime radical relation. For Bézout domains these conditions are also necessary.
2018
262
File in questo prodotto:
File Dimensione Formato  
GLPT_2018.pdf

accesso aperto

Descrizione: pdf
Tipologia: Versione Editoriale
Licenza: DRM non definito
Dimensione 280.94 kB
Formato Adobe PDF
280.94 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/420930
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact