We provide algebraic conditions ensuring the decidability of the theory of modules over effectively given Prüfer (in particular Bézout) domains with infinite residue fields in terms of a suitable generalization of the prime radical relation. For Bézout domains these conditions are also necessary.
DECIDABILITY OF THE THEORY OF MODULES OVER PRÜFER DOMAINS WITH INFINITE RESIDUE FIELDS
GREGORY, LORNA ANNE;L’INNOCENTE, SONIA;TOFFALORI, CARLO
2018-01-01
Abstract
We provide algebraic conditions ensuring the decidability of the theory of modules over effectively given Prüfer (in particular Bézout) domains with infinite residue fields in terms of a suitable generalization of the prime radical relation. For Bézout domains these conditions are also necessary.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
GLPT_2018.pdf
accesso aperto
Descrizione: pdf
Tipologia:
Versione Editoriale
Licenza:
DRM non definito
Dimensione
280.94 kB
Formato
Adobe PDF
|
280.94 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.