Cd is known for its carcinogenic effects, however its mechanism of toxicity and in particular its ability to promote oxidative stress is debated. In fact, although it is considered a redox-inactive metal, at high concentration Cd was shown to promote indirectly oxidative stress. In this study we investigated metal accumulation in ex vivo exposed trout (Oncorhynchus mykiss) erythrocytes and Cd dose-dependent effect in terms of RBC viability, cytosolic and mitochondrial ROS levels as well as its effects on mitochondrial membrane depolarization, hemoglobin stability and precipitation. In the concentration range used, Cd did not affect cell viability. However, metal accumulation was associated with an increase in all oxidative indexes evaluated, except mitochondrial superoxide anion production that, on the contrary, was significantly decreased, probably due to a lowered respiration rate associated with interference of Cd with complex I, II and III, as suggested by the observed Cd-dependent mitochondrial membrane depolarization. On the other hand, hemoglobin destabilisation seems to be the major trigger of oxidative stress in this cell type.

Biochemical responses to cadmium exposure in Oncorhynchus mykiss erythrocytes

Falcioni, Giancarlo;
2017-01-01

Abstract

Cd is known for its carcinogenic effects, however its mechanism of toxicity and in particular its ability to promote oxidative stress is debated. In fact, although it is considered a redox-inactive metal, at high concentration Cd was shown to promote indirectly oxidative stress. In this study we investigated metal accumulation in ex vivo exposed trout (Oncorhynchus mykiss) erythrocytes and Cd dose-dependent effect in terms of RBC viability, cytosolic and mitochondrial ROS levels as well as its effects on mitochondrial membrane depolarization, hemoglobin stability and precipitation. In the concentration range used, Cd did not affect cell viability. However, metal accumulation was associated with an increase in all oxidative indexes evaluated, except mitochondrial superoxide anion production that, on the contrary, was significantly decreased, probably due to a lowered respiration rate associated with interference of Cd with complex I, II and III, as suggested by the observed Cd-dependent mitochondrial membrane depolarization. On the other hand, hemoglobin destabilisation seems to be the major trigger of oxidative stress in this cell type.
2017
262
File in questo prodotto:
File Dimensione Formato  
ecotoxicology environm 2017 p 476.pdf

solo gestori di archivio

Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 545.89 kB
Formato Adobe PDF
545.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/412294
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact