The Reverse Monte Carlo (RMC) algorithm for structure refinement has been applied to x-ray absorption spectroscopy (XAS) multiple-edge data sets for six gas phase molecular systems (SnI2, CdI2, BBr3, GaI3, GeBr4, GeI4). Sets of thousands of molecular replicas were involved in the refinement process, driven by the XAS data and constrained by available electron diffraction results. The equilibrated configurations were analysed to determine the average tridimensional structure and obtain reliable bond and bond-angle distributions. Detectable deviations from Gaussian models were found in some cases. This work shows that a RMC refinement of XAS data is able to provide geometrical models for molecular structures compatible with present experimental evidence. The validation of this approach on simple molecular systems is particularly important in view of its possible simple extension to more complex and extended systems including metal-organic complexes, biomolecules, or nanocrystalline systems.
Structure and atomic correlations in molecular systems probed by XAS reverse Monte Carlo refinement
Andrea Di Cicco;Fabio Iesari;Angela Trapananti;FILIPPONI, ADRIANO
2018-01-01
Abstract
The Reverse Monte Carlo (RMC) algorithm for structure refinement has been applied to x-ray absorption spectroscopy (XAS) multiple-edge data sets for six gas phase molecular systems (SnI2, CdI2, BBr3, GaI3, GeBr4, GeI4). Sets of thousands of molecular replicas were involved in the refinement process, driven by the XAS data and constrained by available electron diffraction results. The equilibrated configurations were analysed to determine the average tridimensional structure and obtain reliable bond and bond-angle distributions. Detectable deviations from Gaussian models were found in some cases. This work shows that a RMC refinement of XAS data is able to provide geometrical models for molecular structures compatible with present experimental evidence. The validation of this approach on simple molecular systems is particularly important in view of its possible simple extension to more complex and extended systems including metal-organic complexes, biomolecules, or nanocrystalline systems.File | Dimensione | Formato | |
---|---|---|---|
JCP_148_094307_2018.pdf
accesso aperto
Descrizione: pdf
Tipologia:
Versione Editoriale
Licenza:
DRM non definito
Dimensione
839.04 kB
Formato
Adobe PDF
|
839.04 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.