We use nonsmooth critical point theory and the theory of geodesics with obstacle to show a multiplicity result about orthogonal geodesic chords in a Riemannian manifold (with boundary) which is homeomorphic to an N-disk. This applies to brake orbits in a potential well of a natural Hamiltonian system, providing a further step towards the proof of a celebrated conjecture by Seifert (Math Z 51:197–216, 1948).

Multiple orthogonal geodesic chords in nonconvex Riemannian disks using obstacles

Giambò, Roberto;Giannoni, Fabio;
2018-01-01

Abstract

We use nonsmooth critical point theory and the theory of geodesics with obstacle to show a multiplicity result about orthogonal geodesic chords in a Riemannian manifold (with boundary) which is homeomorphic to an N-disk. This applies to brake orbits in a potential well of a natural Hamiltonian system, providing a further step towards the proof of a celebrated conjecture by Seifert (Math Z 51:197–216, 1948).
File in questo prodotto:
File Dimensione Formato  
Calc. Var., 2018, 57, p. 117.pdf

accesso aperto

Descrizione: Articolo Pre-print da arXiv.org, math, arXiv:1807.00887v1
Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 305.59 kB
Formato Adobe PDF
305.59 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/408874
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact