Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants damaging to the marine environment and the wildlife. Herein, we investigated the effects of extracts from coastal seawaters (central Adriatic sea, Italy), showing high concentrations of PAHs, on pregnane X receptor (PXR)-transcriptional regulation of the cytochrome P450 3A (CYP3A) gene using seabream primary hepatocytes. The results show that concentrated extracts of seawater with original ΣPAH concentrations above the putative threshold of 30 ng L-1 increased expression of PXR and its main target gene, CYP3A. Similar results were observed for LXR and its target gene SREBP-1c suggesting pathway cross-talk. These data are further supported by the finding of multiple PXR and LXR response elements in the putative promoters of their target genes. Overall, our data indicate the capacity of seawater extracts, containing environmentally relevant levels of PAHs, to affect multiple pathways, including lipid and cholesterol metabolism.

Pregnane X receptor (PXR) signaling in seabream primary hepatocytes exposed to extracts of seawater samples collected from polycyclic aromatic hydrocarbons (PAHs)-contaminated coastal areas

Cocci, Paolo;Mosconi, Gilberto;Palermo, Francesco Alessandro
2017-01-01

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants damaging to the marine environment and the wildlife. Herein, we investigated the effects of extracts from coastal seawaters (central Adriatic sea, Italy), showing high concentrations of PAHs, on pregnane X receptor (PXR)-transcriptional regulation of the cytochrome P450 3A (CYP3A) gene using seabream primary hepatocytes. The results show that concentrated extracts of seawater with original ΣPAH concentrations above the putative threshold of 30 ng L-1 increased expression of PXR and its main target gene, CYP3A. Similar results were observed for LXR and its target gene SREBP-1c suggesting pathway cross-talk. These data are further supported by the finding of multiple PXR and LXR response elements in the putative promoters of their target genes. Overall, our data indicate the capacity of seawater extracts, containing environmentally relevant levels of PAHs, to affect multiple pathways, including lipid and cholesterol metabolism.
2017
File in questo prodotto:
File Dimensione Formato  
MERE 2017b.pdf

solo gestori di archivio

Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 589.78 kB
Formato Adobe PDF
589.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/405712
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact