We give necessary and sufficient conditions for a 4-manifold to be a branched covering of CP2, S2xS2, S2x similar to S2 or S3xS1, which are expressed in terms of the Betti numbers and the signature of the 4-manifold. Moreover, we extend these results to include branched coverings of connected sums of the above manifolds. This leads to some new examples of closed simply connected quasiregularly elliptic 4-manifolds.

Branched coverings of CP^2 and other basic 4-manifolds

Piergallini, R
;
2021-01-01

Abstract

We give necessary and sufficient conditions for a 4-manifold to be a branched covering of CP2, S2xS2, S2x similar to S2 or S3xS1, which are expressed in terms of the Betti numbers and the signature of the 4-manifold. Moreover, we extend these results to include branched coverings of connected sums of the above manifolds. This leads to some new examples of closed simply connected quasiregularly elliptic 4-manifolds.
2021
262
File in questo prodotto:
File Dimensione Formato  
Branched coverings of CP2.pdf

solo gestori di archivio

Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 354.02 kB
Formato Adobe PDF
354.02 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1707.03667 (1).pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 227.37 kB
Formato Adobe PDF
227.37 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/405378
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact