Weyl fermions are shown to exist inside a parabolic band in a single electronic layer, where the kinetic energy of carriers is given by the non-relativistic Schroedinger equation. There are Fermi arcs as a direct consequence of the folding of a ring-shaped Fermi surface inside the first Brillouin zone. Our results stem from the decomposition of the kinetic energy into the sum of the square of the Weyl state, the coupling to the local magnetic field and the Rashba interaction. The Weyl fermions break the space and time reflection symmetries present in the kinetic energy, thus allowing for the onset of a weak three-dimensional magnetic field around the layer. This field brings topological stability to the current-carrying states through a Chern number. In the special limit for which the Weyl state becomes gapless, this magnetic interaction is shown to be purely attractive, thus suggesting the onset of a superconducting condensate of zero helicity states.

Weyl states and Fermi arcs in parabolic bands

Perali, Andrea
2017-01-01

Abstract

Weyl fermions are shown to exist inside a parabolic band in a single electronic layer, where the kinetic energy of carriers is given by the non-relativistic Schroedinger equation. There are Fermi arcs as a direct consequence of the folding of a ring-shaped Fermi surface inside the first Brillouin zone. Our results stem from the decomposition of the kinetic energy into the sum of the square of the Weyl state, the coupling to the local magnetic field and the Rashba interaction. The Weyl fermions break the space and time reflection symmetries present in the kinetic energy, thus allowing for the onset of a weak three-dimensional magnetic field around the layer. This field brings topological stability to the current-carrying states through a Chern number. In the special limit for which the Weyl state becomes gapless, this magnetic interaction is shown to be purely attractive, thus suggesting the onset of a superconducting condensate of zero helicity states.
2017
262
File in questo prodotto:
File Dimensione Formato  
Perali_Andrea_Doria_EPL_119_2017.pdf

solo gestori di archivio

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 557.05 kB
Formato Adobe PDF
557.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/405271
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact