Typical self-organising collective systems consist of a large number of interacting objects that coordinate their activities in a decentralised and often implicit way. Design of such systems is challenging and requires suitable, scalable analysis tools to check properties of proposed system designs before they are put into operation. We present a novel scalable, on-the-fly approximated model-checking procedure to verify bounded PCTL properties of selected individuals in the context of very large systems of independent interacting objects. The proposed procedure combines on-the-fly model-checking techniques with deterministic mean-field approximation in discrete time. The asymptotic correctness of the procedure is proven and a prototype implementation of the model-checker is presented. The potential of the verification approach is illustrated by its application on self-organising collective systems and an overview of remaining open issues and future extensions is provided.

On-the-fly PCTL fast mean-field approximated model-checking for self-organising coordination

Loreti Michele;
2015-01-01

Abstract

Typical self-organising collective systems consist of a large number of interacting objects that coordinate their activities in a decentralised and often implicit way. Design of such systems is challenging and requires suitable, scalable analysis tools to check properties of proposed system designs before they are put into operation. We present a novel scalable, on-the-fly approximated model-checking procedure to verify bounded PCTL properties of selected individuals in the context of very large systems of independent interacting objects. The proposed procedure combines on-the-fly model-checking techniques with deterministic mean-field approximation in discrete time. The asymptotic correctness of the procedure is proven and a prototype implementation of the model-checker is presented. The potential of the verification approach is illustrated by its application on self-organising collective systems and an overview of remaining open issues and future extensions is provided.
2015
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S016764231500132X-main.pdf

solo gestori di archivio

Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 999.67 kB
Formato Adobe PDF
999.67 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/404998
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 17
social impact