We propose a nite dimensional setup for the study of lightlike geodesics starting orthogonally to a spacelike (n − 2)-submanifold and arriving orthogonally to the time-slices of an (n − 1)-dimensional timelike submanifold of a n-dimensional spacetime. Under a transversality and a nonfocality assumption, we prove a nite dimensional reduction of a general relativistic Fermat principle, and we give a formula for the Morse index. We present some applications to bifurcation theory, and we conclude the paper with the discussion of some examples that illustrate our results.
A finite dimensional approach to light rays in General Relativity
Giambò, Roberto;Giannoni, Fabio;
2018-01-01
Abstract
We propose a nite dimensional setup for the study of lightlike geodesics starting orthogonally to a spacelike (n − 2)-submanifold and arriving orthogonally to the time-slices of an (n − 1)-dimensional timelike submanifold of a n-dimensional spacetime. Under a transversality and a nonfocality assumption, we prove a nite dimensional reduction of a general relativistic Fermat principle, and we give a formula for the Morse index. We present some applications to bifurcation theory, and we conclude the paper with the discussion of some examples that illustrate our results.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
transverse_light_new_REV.pdf
accesso aperto
Descrizione: Preprint
Tipologia:
Documento in Pre-print
Licenza:
DRM non definito
Dimensione
447.06 kB
Formato
Adobe PDF
|
447.06 kB | Adobe PDF | Visualizza/Apri |
Nonlinear analysis 2018.pdf
solo gestori di archivio
Tipologia:
Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
983.84 kB
Formato
Adobe PDF
|
983.84 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.