In this paper, the problem of icing detection is considered for wind turbines (WTs) operating in medium speed wind region (region 2) and subject to a control law tracking the maximum delivery point of the power coefficient characteristic. Based on a robust observer of the rotor angular acceleration, rotor inertia is estimated in order to detect its eventual increase due to icing. Moreover, the observed value of rotor inertia can be potentially used for updating the controller parameters or to stop the turbine when icing is too severe. The proposed approach has been tested by intensive MatLab® simulations using the National Renewable Energy Laboratory 5 MW WT model.

A Sliding Mode Observer-Based Icing Detection and Estimation Scheme for Wind Turbines

Corradini, Maria Letizia;
2018-01-01

Abstract

In this paper, the problem of icing detection is considered for wind turbines (WTs) operating in medium speed wind region (region 2) and subject to a control law tracking the maximum delivery point of the power coefficient characteristic. Based on a robust observer of the rotor angular acceleration, rotor inertia is estimated in order to detect its eventual increase due to icing. Moreover, the observed value of rotor inertia can be potentially used for updating the controller parameters or to stop the turbine when icing is too severe. The proposed approach has been tested by intensive MatLab® simulations using the National Renewable Energy Laboratory 5 MW WT model.
2018
File in questo prodotto:
File Dimensione Formato  
Journal of Dynamic Systems Measurement and Control.pdf.pdf

solo gestori di archivio

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/404567
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact