We realise a feedback-controlled optical Fabry–Pérot cavity in which the transmitted cavity output is used to modulate the input amplitude fluctuations. The resulting phase-dependent fluctuations of the in-loop optical field, which may be either sub-shot or super-shot noise, can be engineered to favourably affect the optomechanical interaction with a nanomechanical membrane placed within the cavity. Here we show that in the super-shot-noise regime ('anti-squashed light') the in-loop field has a strongly reduced effective cavity linewidth, corresponding to an increased optomechanical cooperativity. In this regime, feedback improves the simultaneous resolved-sideband cooling of two nearly degenerate membrane mechanical modes by one order of magnitude.
Enhancement of three-mode optomechanical interaction by feedback-controlled light
KRALJ, NENAD;ROSSI, MASSIMILIANO;ZIPPILLI, STEFANO;NATALI, Riccardo;DI GIUSEPPE, Giovanni;VITALI, David
2017-01-01
Abstract
We realise a feedback-controlled optical Fabry–Pérot cavity in which the transmitted cavity output is used to modulate the input amplitude fluctuations. The resulting phase-dependent fluctuations of the in-loop optical field, which may be either sub-shot or super-shot noise, can be engineered to favourably affect the optomechanical interaction with a nanomechanical membrane placed within the cavity. Here we show that in the super-shot-noise regime ('anti-squashed light') the in-loop field has a strongly reduced effective cavity linewidth, corresponding to an increased optomechanical cooperativity. In this regime, feedback improves the simultaneous resolved-sideband cooling of two nearly degenerate membrane mechanical modes by one order of magnitude.File | Dimensione | Formato | |
---|---|---|---|
Kralj, 2017-Quantum Sci._Technol., vol. 2 art. 034014.pdf
solo gestori di archivio
Tipologia:
Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.25 MB
Formato
Adobe PDF
|
2.25 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.