Obesity represents the central and causal component of the metabolic syndrome (MetS), which is a growing medical challenge in western countries as a result of changes in lifestyle. Obesity is also associated with an increased incidence of arterial hypertension and of cardiovascular disease burden. In animal models of diet-induced obesity, endothelial inflammatory activation, demonstrated by changes in adhesion molecule expression, is one of the earli-est manifestation of vascular and cardiac damage. The intercellular adhesion molecule-1 (ICAM-1) is a member of the immuno-globulin (Ig) superfamily present on the surface of several other cell types, in-cluding endothelial cells. Adhesion molecules [e.g., ICAM-1, vascular cell adhe-sion molecule 1 (VCAM-1) and platelet-endothelial cell adhesion molecule-1 (PECAM-1)] if in contact with an activated endothelium could represent attrac-tive targets for delivery of drugs and imaging probes to vascular pathological sites. The present study was designed to investigate, with morphological, immunochemical and immunohistochemical techniques, changes of heart and coronary arteries in Obese Zucker rats (OZR) compared to the lean Zucker rats (LZRs). The OZRs, with a mutation in leptin receptors, is a model of Type II diabetes mellitus, characterized by the presence of obesity, hyperglycemia, hyperinsulinemia, hyperlipidemia and moderate hypertension similar to MetS. The heart of OZRs of 12, 16 and 20 weeks was processed for microanatomical analysis and ICAM-1, VCAM-1 and PECAM-1 and pro-inflammatory cytokines (IL-1, IL-6 and TNF-) immunohistochemistry. OZRs at the different age, developed ventricular hypertrophy, characterized by increase size of cardiomyocytes but not fibrosis compared to LZRs. This phenomenon was more evident in 20-weeks-old OZRs. VCAM-1 was more expressed in the coronary arteries compared to other adhesion molecules, and increased in the OZRs of 20-weeks of age. In the same age, IL-6 expression was significantly increased. These results suggest that the obesity leads to heart tissue changes and coronary inflammation. Myocardial vascular inflammation, induced by metabolic comorbidities, could contribute to the development of heart failure. Protective strategies in obesity may be focussed versus body weight loss and countering of metabolic alterations induced by obesity.

Heart Morphology in Zucker-Obese Rat

TAYEBATI, Seyed Khosrow;TOMASSONI, Daniele;MARTINELLI, ILENIA;AMENTA, Francesco
2016

Abstract

Obesity represents the central and causal component of the metabolic syndrome (MetS), which is a growing medical challenge in western countries as a result of changes in lifestyle. Obesity is also associated with an increased incidence of arterial hypertension and of cardiovascular disease burden. In animal models of diet-induced obesity, endothelial inflammatory activation, demonstrated by changes in adhesion molecule expression, is one of the earli-est manifestation of vascular and cardiac damage. The intercellular adhesion molecule-1 (ICAM-1) is a member of the immuno-globulin (Ig) superfamily present on the surface of several other cell types, in-cluding endothelial cells. Adhesion molecules [e.g., ICAM-1, vascular cell adhe-sion molecule 1 (VCAM-1) and platelet-endothelial cell adhesion molecule-1 (PECAM-1)] if in contact with an activated endothelium could represent attrac-tive targets for delivery of drugs and imaging probes to vascular pathological sites. The present study was designed to investigate, with morphological, immunochemical and immunohistochemical techniques, changes of heart and coronary arteries in Obese Zucker rats (OZR) compared to the lean Zucker rats (LZRs). The OZRs, with a mutation in leptin receptors, is a model of Type II diabetes mellitus, characterized by the presence of obesity, hyperglycemia, hyperinsulinemia, hyperlipidemia and moderate hypertension similar to MetS. The heart of OZRs of 12, 16 and 20 weeks was processed for microanatomical analysis and ICAM-1, VCAM-1 and PECAM-1 and pro-inflammatory cytokines (IL-1, IL-6 and TNF-) immunohistochemistry. OZRs at the different age, developed ventricular hypertrophy, characterized by increase size of cardiomyocytes but not fibrosis compared to LZRs. This phenomenon was more evident in 20-weeks-old OZRs. VCAM-1 was more expressed in the coronary arteries compared to other adhesion molecules, and increased in the OZRs of 20-weeks of age. In the same age, IL-6 expression was significantly increased. These results suggest that the obesity leads to heart tissue changes and coronary inflammation. Myocardial vascular inflammation, induced by metabolic comorbidities, could contribute to the development of heart failure. Protective strategies in obesity may be focussed versus body weight loss and countering of metabolic alterations induced by obesity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11581/403125
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact