In this work, we describe the identification of the 1,2,4-triazolo[4,3-a]pyrazin-3-one as a new versatile scaffold for the development of adenosine human (h) receptor antagonists. The new chemotype ensued from a molecular simplification approach applied to our previously reported 1,2,4-triazolo[4,3-a]quinoxalin-1-one series. Hence, a set of novel 8-amino-2-aryl-1,2,4-triazolopyrazin-3-one derivatives, featured by different substituents on the 2-phenyl ring (R) and at position 6 (R6), was synthesized with the main purpose of targeting the hA2A adenosine receptor (AR). Several compounds possessed nanomolar affinity for the hA2A AR (Ki = 2.9-10 nM) and some, very interestingly, also showed high selectivity for the target. One selected potent hA2A AR antagonist (12, R = H, R6 = 4-methoxyphenyl) demonstrated some ability to counteract MPP(+)-induced neurotoxicity in cultured human neuroblastoma SH-SY5Y cells, a widely used in vitro Parkinson's disease model. Docking studies at hAR structures were performed to rationalize the observed affinity data.

The 1,2,4-Triazolo[4,3-a]pyrazin-3-one as a Versatile Scaffold for the Design of Potent Adenosine Human Receptor Antagonists. Structural Investigations to Target the A2A Receptor Subtype

DAL BEN, Diego;MARUCCI, Gabriella;BUCCIONI, Michela;VOLPINI, Rosaria;
2017

Abstract

In this work, we describe the identification of the 1,2,4-triazolo[4,3-a]pyrazin-3-one as a new versatile scaffold for the development of adenosine human (h) receptor antagonists. The new chemotype ensued from a molecular simplification approach applied to our previously reported 1,2,4-triazolo[4,3-a]quinoxalin-1-one series. Hence, a set of novel 8-amino-2-aryl-1,2,4-triazolopyrazin-3-one derivatives, featured by different substituents on the 2-phenyl ring (R) and at position 6 (R6), was synthesized with the main purpose of targeting the hA2A adenosine receptor (AR). Several compounds possessed nanomolar affinity for the hA2A AR (Ki = 2.9-10 nM) and some, very interestingly, also showed high selectivity for the target. One selected potent hA2A AR antagonist (12, R = H, R6 = 4-methoxyphenyl) demonstrated some ability to counteract MPP(+)-induced neurotoxicity in cultured human neuroblastoma SH-SY5Y cells, a widely used in vitro Parkinson's disease model. Docking studies at hAR structures were performed to rationalize the observed affinity data.
File in questo prodotto:
File Dimensione Formato  
J Med Chem 2017.pdf

non disponibili

Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.37 MB
Formato Adobe PDF
4.37 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11581/401663
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 25
social impact