Rollback is a fundamental technique for ensuring reliability of systems, allowing one, in case of troubles, to recover a past system state. However, the definition of rollback in a concurrent/distributed scenario is quite tricky. We propose an approach based on the notion of causal-consistent reversibility: any given past action can be undone, provided that all the actions caused by it are undone as well. Given that, we define a rollback as the minimal causal-consistent sequence of backward steps able to undo a given action. We define the semantics of such a rollback operator, and show that it satisfies the above specification. The approach that we present is quite general, but we instantiate it in the case of muKlaim, a formal coordination language based on distributed tuple spaces. We remark that this is the first definition of causal-consistent rollback in a shared–memory setting. We illustrate the use of rollback in muKlaim on a simple, but realistic, application scenario.

Causal-consistent rollback in a tuple-based language

TIEZZI, Francesco
2017-01-01

Abstract

Rollback is a fundamental technique for ensuring reliability of systems, allowing one, in case of troubles, to recover a past system state. However, the definition of rollback in a concurrent/distributed scenario is quite tricky. We propose an approach based on the notion of causal-consistent reversibility: any given past action can be undone, provided that all the actions caused by it are undone as well. Given that, we define a rollback as the minimal causal-consistent sequence of backward steps able to undo a given action. We define the semantics of such a rollback operator, and show that it satisfies the above specification. The approach that we present is quite general, but we instantiate it in the case of muKlaim, a formal coordination language based on distributed tuple spaces. We remark that this is the first definition of causal-consistent rollback in a shared–memory setting. We illustrate the use of rollback in muKlaim on a simple, but realistic, application scenario.
2017
File in questo prodotto:
File Dimensione Formato  
Journal of Logical and Algebraic Methods in Programming, 2017 vol. 88, pp. 99–120.pdf

solo gestori di archivio

Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 574.64 kB
Formato Adobe PDF
574.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/400046
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 14
social impact