Outer-shell s0/p0 orbital mixing with d10 orbitals and symmetry reductionuponcupriphicationofcyclic trinucleartrigonal-planargold(I) complexes are found to sensitize ground-state Cu(I)–Au(I) covalent bonds and near-unity phosphorescence quantum yields. Heterobimetallic Au4Cu2 {[Au4(μ-C2,N3-EtIm)4Cu2(μ-3,5-(CF3)2Pz)2], (4a)}, Au2Cu {[Au2(μ-C2,N3-BzIm)2Cu(μ-3,5-(CF3)2Pz)], (1) and [Au2(μ-C2, N3-MeIm)2Cu(μ-3,5-(CF3)2Pz)], (3a)}, AuCu2 {[Au(μ-C2,N3-MeIm)Cu2(μ3,5-(CF3)2Pz)2], (3b) and [Au(μ-C2,N3-EtIm)Cu2(μ-3,5-(CF3)2Pz)2], (4b)} and stacked Au3/Cu3 {[Au(μ-C2,N3-BzIm)]3[Cu(μ-3,5-(CF3)2Pz)]3, (2)} formuponreactingAu3 {[Au(μ-C2,N3-(N-R)Im)]3 ((N-R)Im = imidazolate; R =benzyl/methyl/ethyl =BzIm/MeIm/EtIm)} with Cu3 {[Cu(μ-3,5(CF3)2Pz)]3 (3,5-(CF3)2Pz = 3,5-bis(trifluoromethyl)pyrazolate)}. The crystal structures of 1 and 3a reveal stair-step infinite chains whereby adjacent dimer-of-trimer units are noncovalently packed via twoAu(I)⋯Cu(I)metallophilicinteractions,whereas 4a exhibitsa hexanuclear cluster structure wherein two monomer-of-trimer units are linked by a genuine d10–d10 polar-covalent bond with ligandunassisted Cu(I)–Au(I) distances of 2.8750(8) Å each—the shortest such an intermolecular distance ever reported between any two d10 centers so as to deem it a “metal–metal bond” vis-à-vis “metallophilic interaction.” Density-functional calculations estimate 35– 43kcal/molbindingenergy,akintotypicalM–Msingle-bondenergies. Congruently, FTIR spectra of4a showmultiple far-IR bands within 65– 200 cm−1, assignable to vCu-Au as validated by both the Harvey–Gray method of crystallographic-distance-to-force-constant correlation and dispersive density functional theory computations. Notably, the heterobimetallic complexes herein exhibit photophysical properties that are favorable to those for their homometallic congeners, due to threefold-to-twofold symmetry reduction, resulting in cuprophilicsensitizationinextinctioncoefficientandsolid-state photoluminescence quantum yields approaching unity (ΦPL = 0.90–0.97 vs. 0–0.83 for Au3 and Cu3 precursors), which bodes well for potential future utilization in inorganic and/or organic LED applications.

Cupriphication of gold to sensitize d10–d10 metal–metal bonds and near-unity phosphorescence quantum yields

GALASSI, Rossana;RICCI, SIMONE;BURINI, Alfredo;
2017-01-01

Abstract

Outer-shell s0/p0 orbital mixing with d10 orbitals and symmetry reductionuponcupriphicationofcyclic trinucleartrigonal-planargold(I) complexes are found to sensitize ground-state Cu(I)–Au(I) covalent bonds and near-unity phosphorescence quantum yields. Heterobimetallic Au4Cu2 {[Au4(μ-C2,N3-EtIm)4Cu2(μ-3,5-(CF3)2Pz)2], (4a)}, Au2Cu {[Au2(μ-C2,N3-BzIm)2Cu(μ-3,5-(CF3)2Pz)], (1) and [Au2(μ-C2, N3-MeIm)2Cu(μ-3,5-(CF3)2Pz)], (3a)}, AuCu2 {[Au(μ-C2,N3-MeIm)Cu2(μ3,5-(CF3)2Pz)2], (3b) and [Au(μ-C2,N3-EtIm)Cu2(μ-3,5-(CF3)2Pz)2], (4b)} and stacked Au3/Cu3 {[Au(μ-C2,N3-BzIm)]3[Cu(μ-3,5-(CF3)2Pz)]3, (2)} formuponreactingAu3 {[Au(μ-C2,N3-(N-R)Im)]3 ((N-R)Im = imidazolate; R =benzyl/methyl/ethyl =BzIm/MeIm/EtIm)} with Cu3 {[Cu(μ-3,5(CF3)2Pz)]3 (3,5-(CF3)2Pz = 3,5-bis(trifluoromethyl)pyrazolate)}. The crystal structures of 1 and 3a reveal stair-step infinite chains whereby adjacent dimer-of-trimer units are noncovalently packed via twoAu(I)⋯Cu(I)metallophilicinteractions,whereas 4a exhibitsa hexanuclear cluster structure wherein two monomer-of-trimer units are linked by a genuine d10–d10 polar-covalent bond with ligandunassisted Cu(I)–Au(I) distances of 2.8750(8) Å each—the shortest such an intermolecular distance ever reported between any two d10 centers so as to deem it a “metal–metal bond” vis-à-vis “metallophilic interaction.” Density-functional calculations estimate 35– 43kcal/molbindingenergy,akintotypicalM–Msingle-bondenergies. Congruently, FTIR spectra of4a showmultiple far-IR bands within 65– 200 cm−1, assignable to vCu-Au as validated by both the Harvey–Gray method of crystallographic-distance-to-force-constant correlation and dispersive density functional theory computations. Notably, the heterobimetallic complexes herein exhibit photophysical properties that are favorable to those for their homometallic congeners, due to threefold-to-twofold symmetry reduction, resulting in cuprophilicsensitizationinextinctioncoefficientandsolid-state photoluminescence quantum yields approaching unity (ΦPL = 0.90–0.97 vs. 0–0.83 for Au3 and Cu3 precursors), which bodes well for potential future utilization in inorganic and/or organic LED applications.
2017
File in questo prodotto:
File Dimensione Formato  
PNAS-2017-Galassi-E5042-51.pdf

accesso aperto

Tipologia: Versione Editoriale
Licenza: DRM non definito
Dimensione 2.3 MB
Formato Adobe PDF
2.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/399659
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 46
social impact