To date, efficiency upon non-viral DNA delivery remains low and this implies the existence of unidentified transfection barriers. Here we explore the mechanisms of action of multicomponent (MC) cationic liposome/DNA complexes (lipoplexes) by a combination of reporter technologies, dynamic light scattering (DLS), synchrotron small angle X-ray scattering (SAXS), fluorescence activated cell sorting (FACS) analysis and laser scanning confocal microscopy (LSCM) in live cells. Lipofectamine – the gold standard among transfection reagents – was used as a reference. On the basis of our results, we suggest that an additional transfection barrier impairs transfection efficiency, that is: low lipoplex concentration at the cell surface. Based on the acquired knowledge we propose an optimized transfection protocol that allowed us to efficiently transfect DND41, JURKAT, MOLT3, P12-ICHIKAWA, ALL-SILL, TALL-1 human T-cell acute lymphoblastic leukemia (T-ALL) cell lines known to be difficult-to-transfect by using non-viral vectors and where LFN-based technologies fail to give satisfactory results.
Manipulation of lipoplex concentration at the cell surface boosts transfection efficiency in hard-to-transfect cells
MARCHINI, Cristina;AMICI, Augusto;ANDREANI, CRISTINA;BARTOLACCI, Caterina;DIGIACOMO, LUCA;GAMBINI, VALENTINA;
2017-01-01
Abstract
To date, efficiency upon non-viral DNA delivery remains low and this implies the existence of unidentified transfection barriers. Here we explore the mechanisms of action of multicomponent (MC) cationic liposome/DNA complexes (lipoplexes) by a combination of reporter technologies, dynamic light scattering (DLS), synchrotron small angle X-ray scattering (SAXS), fluorescence activated cell sorting (FACS) analysis and laser scanning confocal microscopy (LSCM) in live cells. Lipofectamine – the gold standard among transfection reagents – was used as a reference. On the basis of our results, we suggest that an additional transfection barrier impairs transfection efficiency, that is: low lipoplex concentration at the cell surface. Based on the acquired knowledge we propose an optimized transfection protocol that allowed us to efficiently transfect DND41, JURKAT, MOLT3, P12-ICHIKAWA, ALL-SILL, TALL-1 human T-cell acute lymphoblastic leukemia (T-ALL) cell lines known to be difficult-to-transfect by using non-viral vectors and where LFN-based technologies fail to give satisfactory results.File | Dimensione | Formato | |
---|---|---|---|
Nanomedicine- Nanotechnology, Biology, and Medicine.pdf
solo gestori di archivio
Tipologia:
Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
964.46 kB
Formato
Adobe PDF
|
964.46 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.