Tolerance and dependence associated with chronic opioid exposure result from molecular, cellular, and neural network adaptations. Such adaptations concern opioid and nonopioid systems, including α2-adrenoceptors (α2-ARs) and I1- and I2-imidazoline binding sites (IBS). Agmatine, one of the hypothesized endogenous ligands of IBS, targeting several systems including α2-ARs and IBS, proved to be able to regulate opioid-induced analgesia and to attenuate the development of tolerance and dependence. Interested in the complex pharmacological profile of agmatine and considering the nature of its targets, we evaluated two series of imidazolines, rationally designed to simultaneously interact with I1-/I2-IBS or I1-/I2-IBS/α2-ARs. The compounds showing the highest affinities for I1-/I2-IBS or I1-/I2-IBS/α2-ARs have been selected for their in vivo evaluation on opiate withdrawal syndrome. Interestingly, 9, displaying I1-/I2-IBS/α2-ARs interaction profile, appears more effective in reducing expression and acquisition of morphine dependence and, therefore, might be considered a promising tool in managing opioid addiction.

Combined Interactions with I1-, I2-Imidazoline Binding Sites and α2-Adrenoceptors To Manage Opioid Addiction

GIUSEPPONI, MARIA ELENA;CIFANI, Carlo;MICIONI DI BONAVENTURA, Maria Vittoria;DIAMANTI, ELEONORA;DEL BELLO, FABIO;GIANNELLA, Mario;MAMMOLI, VALERIO;PIERGENTILI, Alessandro;PIGINI, Maria;QUAGLIA, Wilma
2016-01-01

Abstract

Tolerance and dependence associated with chronic opioid exposure result from molecular, cellular, and neural network adaptations. Such adaptations concern opioid and nonopioid systems, including α2-adrenoceptors (α2-ARs) and I1- and I2-imidazoline binding sites (IBS). Agmatine, one of the hypothesized endogenous ligands of IBS, targeting several systems including α2-ARs and IBS, proved to be able to regulate opioid-induced analgesia and to attenuate the development of tolerance and dependence. Interested in the complex pharmacological profile of agmatine and considering the nature of its targets, we evaluated two series of imidazolines, rationally designed to simultaneously interact with I1-/I2-IBS or I1-/I2-IBS/α2-ARs. The compounds showing the highest affinities for I1-/I2-IBS or I1-/I2-IBS/α2-ARs have been selected for their in vivo evaluation on opiate withdrawal syndrome. Interestingly, 9, displaying I1-/I2-IBS/α2-ARs interaction profile, appears more effective in reducing expression and acquisition of morphine dependence and, therefore, might be considered a promising tool in managing opioid addiction.
2016
262
File in questo prodotto:
File Dimensione Formato  
ACS Med. Chem. Lett., 2016 vol. 7 pp. 956-961.pdf

solo gestori di archivio

Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/394241
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact