The present study reports on the biocompatibility in vivo after intramuscular and subcutaneous administration in Balb/c mice of vinyl sulphone bearing p(HPMAm-lac1-2)-PEG-p(HPMAm-lac1-2)/thiolated hyaluronic acid hydrogels, designed as novel injectable biomaterials for potential application in the fields of tissue engineering and regenerative medicine. Ultrasonography, used as a method to study hydrogel gelation and residence time in vivo, showed that, upon injection, the biomaterial efficiently formed a hydrogel by simultaneous thermal gelation and Michael Addition cross-linking forming a viscoelastic spherical depot at the injection site. The residence time in vivo (20 days) was found to be shorter than that observed in vitro (32 days), indicating that the injected hydrogel was resorbed not only by chemical hydrolysis but also by cellular metabolism and/or enzymatic activity. Systemic biocompatibility was tested by analysing routine haematological parameters at different time-points (7, 14 and 21 days after administration) and histology of the main organs, including the haematopoietic system. No statistically significant difference between parameters of the saline-treated group and those of the hydrogel-treated group was found. Importantly, a time-dependent decrease of important pro-inflammatory cytokines (TREM1 (Triggering Receptor Expressed on Myeloid cells-1), tumour necrosis factor-α and interleukin-1β) in cultured bone marrow cells extracted from hydrogel treated mice was observed, possibly correlated to the anti-inflammatory effect of hyaluronic acid released in time as hydrogel degraded.
In vivo Biocompatibility of p(HPMAm-lac)-PEG Hydrogels Hybridized with Hyaluronan
Sabbieti, Maria Giovanna;Dubbini, Alessandra;Laus, Fulvio;Paggi, Emanuele;Marchegiani, Andrea;Marchetti, Luigi;Dini, Fabrizio;Di Martino, Piera;Agas, Dimitrios;Censi, Roberta
2017-01-01
Abstract
The present study reports on the biocompatibility in vivo after intramuscular and subcutaneous administration in Balb/c mice of vinyl sulphone bearing p(HPMAm-lac1-2)-PEG-p(HPMAm-lac1-2)/thiolated hyaluronic acid hydrogels, designed as novel injectable biomaterials for potential application in the fields of tissue engineering and regenerative medicine. Ultrasonography, used as a method to study hydrogel gelation and residence time in vivo, showed that, upon injection, the biomaterial efficiently formed a hydrogel by simultaneous thermal gelation and Michael Addition cross-linking forming a viscoelastic spherical depot at the injection site. The residence time in vivo (20 days) was found to be shorter than that observed in vitro (32 days), indicating that the injected hydrogel was resorbed not only by chemical hydrolysis but also by cellular metabolism and/or enzymatic activity. Systemic biocompatibility was tested by analysing routine haematological parameters at different time-points (7, 14 and 21 days after administration) and histology of the main organs, including the haematopoietic system. No statistically significant difference between parameters of the saline-treated group and those of the hydrogel-treated group was found. Importantly, a time-dependent decrease of important pro-inflammatory cytokines (TREM1 (Triggering Receptor Expressed on Myeloid cells-1), tumour necrosis factor-α and interleukin-1β) in cultured bone marrow cells extracted from hydrogel treated mice was observed, possibly correlated to the anti-inflammatory effect of hyaluronic acid released in time as hydrogel degraded.File | Dimensione | Formato | |
---|---|---|---|
J Tissue Eng Regen Med 2017, v. 11 pp. 3056–3067 Sabbieti et al..pdf
solo gestori di archivio
Tipologia:
Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
449.6 kB
Formato
Adobe PDF
|
449.6 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.