The antitumor activity of ruthenium(II) arene (p-cymene, benzene, hexamethylbenzene) derivatives containing modified curcumin ligands (HCurcI=(1E,4Z,6E)-5-hydroxy-1,7-bis(3,4-dimethoxyphenyl)hepta-1,4,6-trien-3-one and HCurcII=(1E,4Z,6E)-5-hydroxy-1,7-bis(4-methoxyphenyl)hepta-1,4,6-trien-3-one) is described. These have been characterized by IR, ESI-MS and NMR spectroscopy. The X-ray crystal structure of HCurcI has been determined and compared with its related Ru complex. Four complexes have been evaluated against five tumor cell lines, whose best activities [IC50 (μM)] are: breast MCF7, 9.7; ovarian A2780, 9.4; glioblastoma U-87, 9.4; lung carcinoma A549, 13.7 and colon-rectal HCT116, 15.5; they are associated with apoptotic features. These activities are improved when compared to the already known corresponding curcumin complex, (p-cymene)Ru(curcuminato)Cl, about twice for the breast and ovarian cancer, 4.7 times stronger in the lung cancer and about 6.6 times stronger in the glioblastoma cell lines. In fact, the less active (p-cymene)Ru(curcuminato)Cl complex only shows similar activity to two novel complexes in the colon cancer cell line. Comparing antitumor activity between these novel complexes and their related curcuminoids, improvement of antiproliferative activity is seen for a complex containing CurcII in A2780, A549 and U87 cell lines, whose IC50 are halved. Therefore, after replacing OH curcumin groups with OCH3, the obtained species HCurcI and its Ru complexes have increased antitumor activity compared to curcumin and its related complex. In contrast, HCurcII is less cytotoxic than curcumin but its related complex [(p-cymene)Ru(CurcII)Cl] is twice as active as HCurcII in 3 cell lines. Results from these novel arene-Ru curcuminoid species suggest that their increased cytotoxicity on tumor cells correlate with increase of curcuminoid lipophilicity.

The in vitro antitumor activity of arene-ruthenium(II) curcuminoid complexes improves when decreasing curcumin polarity

PETTINARI, Riccardo;MARCHETTI, Fabio;PETTINARI, Claudio;
2016-01-01

Abstract

The antitumor activity of ruthenium(II) arene (p-cymene, benzene, hexamethylbenzene) derivatives containing modified curcumin ligands (HCurcI=(1E,4Z,6E)-5-hydroxy-1,7-bis(3,4-dimethoxyphenyl)hepta-1,4,6-trien-3-one and HCurcII=(1E,4Z,6E)-5-hydroxy-1,7-bis(4-methoxyphenyl)hepta-1,4,6-trien-3-one) is described. These have been characterized by IR, ESI-MS and NMR spectroscopy. The X-ray crystal structure of HCurcI has been determined and compared with its related Ru complex. Four complexes have been evaluated against five tumor cell lines, whose best activities [IC50 (μM)] are: breast MCF7, 9.7; ovarian A2780, 9.4; glioblastoma U-87, 9.4; lung carcinoma A549, 13.7 and colon-rectal HCT116, 15.5; they are associated with apoptotic features. These activities are improved when compared to the already known corresponding curcumin complex, (p-cymene)Ru(curcuminato)Cl, about twice for the breast and ovarian cancer, 4.7 times stronger in the lung cancer and about 6.6 times stronger in the glioblastoma cell lines. In fact, the less active (p-cymene)Ru(curcuminato)Cl complex only shows similar activity to two novel complexes in the colon cancer cell line. Comparing antitumor activity between these novel complexes and their related curcuminoids, improvement of antiproliferative activity is seen for a complex containing CurcII in A2780, A549 and U87 cell lines, whose IC50 are halved. Therefore, after replacing OH curcumin groups with OCH3, the obtained species HCurcI and its Ru complexes have increased antitumor activity compared to curcumin and its related complex. In contrast, HCurcII is less cytotoxic than curcumin but its related complex [(p-cymene)Ru(CurcII)Cl] is twice as active as HCurcII in 3 cell lines. Results from these novel arene-Ru curcuminoid species suggest that their increased cytotoxicity on tumor cells correlate with increase of curcuminoid lipophilicity.
2016
262
File in questo prodotto:
File Dimensione Formato  
105 J. of Inorg. Biochem 162 (2016) 44–51.pdf

solo gestori di archivio

Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 552.23 kB
Formato Adobe PDF
552.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/393823
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 49
social impact