A central issue in the science of complex systems is the quantitative characterization of complexity. In the present work we address this issue by resorting to information geometry. Actually we propose a constructive way to associate with a-in principle, any-network a differentiable object (a Riemannian manifold) whose volume is used to define the entropy. The effectiveness of the latter in measuring network complexity is successfully proved through its capability of detecting a classical phase transition occurring in both random graphs and scale-free networks, as well as of characterizing small exponential random graphs, configuration models, and real networks.
Riemannian-geometric entropy for measuring network complexity
FELICE, DOMENICO;MANCINI, Stefano;
2016-01-01
Abstract
A central issue in the science of complex systems is the quantitative characterization of complexity. In the present work we address this issue by resorting to information geometry. Actually we propose a constructive way to associate with a-in principle, any-network a differentiable object (a Riemannian manifold) whose volume is used to define the entropy. The effectiveness of the latter in measuring network complexity is successfully proved through its capability of detecting a classical phase transition occurring in both random graphs and scale-free networks, as well as of characterizing small exponential random graphs, configuration models, and real networks.File | Dimensione | Formato | |
---|---|---|---|
PhysRevE.93.062317.pdf
solo gestori di archivio
Tipologia:
Versione Editoriale
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
517.87 kB
Formato
Adobe PDF
|
517.87 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.