Experiments have confirmed that double monolayer graphene does not generate finite-temperature electron-hole superfluidity, because of very strong screening of the pairing attraction. The linear dispersing energy bands in monolayer graphene block any attempt to reduce the strength of the screening. We propose a hybrid device with two sheets of monolayer graphene in a modulated periodic perpendicular magnetic field. The field preserves the isotropic Dirac cones of the original monolayers but reduces the slope of the cones, making the monolayer Fermi velocity v(F) smaller. We demonstrate that with current experimental techniques, the reduction in vF can weaken the screening sufficiently to allow electron-hole superfluidity at measurable temperatures.
Using magnetic stripes to stabilize superfluidity in electron-hole double monolayer graphene
PERALI, Andrea;NEILSON, DAVID
2015-01-01
Abstract
Experiments have confirmed that double monolayer graphene does not generate finite-temperature electron-hole superfluidity, because of very strong screening of the pairing attraction. The linear dispersing energy bands in monolayer graphene block any attempt to reduce the strength of the screening. We propose a hybrid device with two sheets of monolayer graphene in a modulated periodic perpendicular magnetic field. The field preserves the isotropic Dirac cones of the original monolayers but reduces the slope of the cones, making the monolayer Fermi velocity v(F) smaller. We demonstrate that with current experimental techniques, the reduction in vF can weaken the screening sufficiently to allow electron-hole superfluidity at measurable temperatures.File | Dimensione | Formato | |
---|---|---|---|
Perali_Andrea_PhysRevB.92.220502_2015.pdf
solo gestori di archivio
Descrizione: Articolo principale
Tipologia:
Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
392.34 kB
Formato
Adobe PDF
|
392.34 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.