The use of biological self-assembling materials, plant virus nanoparticles in particular, appears very intriguing as it allows a great choice of symmetries and dimensions, easy chemical and biological engineering of both surface and/or internal cavity as well as safe and rapid production in plants. In this perspective, we present an initial evaluation of the safety profile of two structurally different plant viruses produced in Nicotiana benthamiana L. plants: the filamentous Potato virus X and the icosahedral Tomato bushy stunt virus. In vitro haemolysis assay was used to test the cytotoxic effects, which could arise by pVNPs interaction with cellular membranes, while early embryo assay was used to evaluate toxicity and teratogenicity in vivo. Data indicates that these structurally robust particles, still able to infect plants after incubation in serum up to 24h, have neither toxic nor teratogenic effects in vitro and in vivo. This work represents the first safety-focused characterization of pVNPs in view of their possible use as drug delivery carriers.
In vitro and in vivo toxicity evaluation of plant virus nanocarriers
BARBERINI, LANFRANCO;BLASI, Paolo;
2015-01-01
Abstract
The use of biological self-assembling materials, plant virus nanoparticles in particular, appears very intriguing as it allows a great choice of symmetries and dimensions, easy chemical and biological engineering of both surface and/or internal cavity as well as safe and rapid production in plants. In this perspective, we present an initial evaluation of the safety profile of two structurally different plant viruses produced in Nicotiana benthamiana L. plants: the filamentous Potato virus X and the icosahedral Tomato bushy stunt virus. In vitro haemolysis assay was used to test the cytotoxic effects, which could arise by pVNPs interaction with cellular membranes, while early embryo assay was used to evaluate toxicity and teratogenicity in vivo. Data indicates that these structurally robust particles, still able to infect plants after incubation in serum up to 24h, have neither toxic nor teratogenic effects in vitro and in vivo. This work represents the first safety-focused characterization of pVNPs in view of their possible use as drug delivery carriers.File | Dimensione | Formato | |
---|---|---|---|
Colloids and Surfaces B Biointerfaces 129 (2015) 130–136.pdf
solo gestori di archivio
Descrizione: Colloids and Surfaces B Biointerfaces 129 (2015) 130–136
Tipologia:
Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.23 MB
Formato
Adobe PDF
|
2.23 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.