Cyclic di-GMP (c-di-GMP) is a widespread second messenger that plays a key role in bacterial biofilm formation. The compound’s ability to assume multiple conformations allows it to interact with a diverse set of target macromolecules. Here, we analyzed the binding mode of c-di-GMP to the allosteric inhibitory site (I-site) of diguanylate cyclases (DGCs) and compared it to the conformation adopted in the catalytic site of the EAL phosphodiesterases (PDEs). An array of novel molecules has been designed and synthesized by simplifying the native c-di-GMP structure and replacing the charged phosphodiester backbone with an isosteric nonhydrolyzable 1,2,3-triazole moiety. We developed the first neutral small molecule able to selectively target DGCs discriminating between the I-site of DGCs and the active site of PDEs; this molecule represents a novel tool for mechanistic studies, particularly on those proteins bearing both DGC and PDE modules, and for future optimization studies to target DGCs in vivo.

Synthesis of Triazole-Linked Analogues of c‐di-GMP and Their Interactions with Diguanylate Cyclase

DEL BELLO, FABIO;PETRELLI, Riccardo;CAPPELLACCI, Loredana;
2015-01-01

Abstract

Cyclic di-GMP (c-di-GMP) is a widespread second messenger that plays a key role in bacterial biofilm formation. The compound’s ability to assume multiple conformations allows it to interact with a diverse set of target macromolecules. Here, we analyzed the binding mode of c-di-GMP to the allosteric inhibitory site (I-site) of diguanylate cyclases (DGCs) and compared it to the conformation adopted in the catalytic site of the EAL phosphodiesterases (PDEs). An array of novel molecules has been designed and synthesized by simplifying the native c-di-GMP structure and replacing the charged phosphodiester backbone with an isosteric nonhydrolyzable 1,2,3-triazole moiety. We developed the first neutral small molecule able to selectively target DGCs discriminating between the I-site of DGCs and the active site of PDEs; this molecule represents a novel tool for mechanistic studies, particularly on those proteins bearing both DGC and PDE modules, and for future optimization studies to target DGCs in vivo.
2015
262
File in questo prodotto:
File Dimensione Formato  
JMC-DCI 2015, 58, 8269-84.pdf

solo gestori di archivio

Descrizione: articolo principale
Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.09 MB
Formato Adobe PDF
4.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/387530
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 30
social impact