Let (M,g) be a (complete) Riemannian surface, and let Ω⊂M be an open subset whose closure is homeomorphic to a disk. We prove that if ∂Ω is smooth and it satisfies a strong concavity assumption, then there are at least two distinct orthogonal geodesics in Ω⋃∂Ω. Using the results given in Giambò et al. (Adv Differ Eq 10:931–960, 2005), we then obtain a proof of the existence of two distinct brake orbits for a class of Hamiltonian systems. In our proof we shall use recent deformation results proved in Giambò et al. (Nonlinear Anal Ser A Theory Methods Appl 73:290–337, 2010).
Multiple brake orbits in m-dimensional disks
GIAMBO', Roberto;GIANNONI, Fabio;
2015-01-01
Abstract
Let (M,g) be a (complete) Riemannian surface, and let Ω⊂M be an open subset whose closure is homeomorphic to a disk. We prove that if ∂Ω is smooth and it satisfies a strong concavity assumption, then there are at least two distinct orthogonal geodesics in Ω⋃∂Ω. Using the results given in Giambò et al. (Adv Differ Eq 10:931–960, 2005), we then obtain a proof of the existence of two distinct brake orbits for a class of Hamiltonian systems. In our proof we shall use recent deformation results proved in Giambò et al. (Nonlinear Anal Ser A Theory Methods Appl 73:290–337, 2010).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1503.05805.pdf
accesso aperto
Descrizione: Versione pubblicata su arxiv.org
Tipologia:
Documento in Pre-print
Licenza:
PUBBLICO - Creative Commons
Dimensione
584.86 kB
Formato
Adobe PDF
|
584.86 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.