Let (M,g) be a (complete) Riemannian surface, and let Ω⊂M be an open subset whose closure is homeomorphic to a disk. We prove that if ∂Ω is smooth and it satisfies a strong concavity assumption, then there are at least two distinct orthogonal geodesics in Ω⋃∂Ω. Using the results given in Giambò et al. (Adv Differ Eq 10:931–960, 2005), we then obtain a proof of the existence of two distinct brake orbits for a class of Hamiltonian systems. In our proof we shall use recent deformation results proved in Giambò et al. (Nonlinear Anal Ser A Theory Methods Appl 73:290–337, 2010).

Multiple brake orbits in m-dimensional disks

GIAMBO', Roberto;GIANNONI, Fabio;
2015-01-01

Abstract

Let (M,g) be a (complete) Riemannian surface, and let Ω⊂M be an open subset whose closure is homeomorphic to a disk. We prove that if ∂Ω is smooth and it satisfies a strong concavity assumption, then there are at least two distinct orthogonal geodesics in Ω⋃∂Ω. Using the results given in Giambò et al. (Adv Differ Eq 10:931–960, 2005), we then obtain a proof of the existence of two distinct brake orbits for a class of Hamiltonian systems. In our proof we shall use recent deformation results proved in Giambò et al. (Nonlinear Anal Ser A Theory Methods Appl 73:290–337, 2010).
File in questo prodotto:
File Dimensione Formato  
1503.05805.pdf

accesso aperto

Descrizione: Versione pubblicata su arxiv.org
Tipologia: Documento in Pre-print
Licenza: PUBBLICO - Creative Commons
Dimensione 584.86 kB
Formato Adobe PDF
584.86 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/387168
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact