Natural iron-bearing sodic phonolitic melts represent an extreme compositional range of the effect of the [Na/(Na+K)] ratio on the geochemical behavior of Fe in volcanic systems. Yet phonolitic melts have not been well investigated. The glasses studied here have been synthesized from liquids equilibrated over a range of oxygen fugacity conditions [log10(fO2) from –0.68 to –11] to elucidate the role of the alkali ratio in influencing the local environment around both divalent and trivalent Fe. In this study, the Fe K-edge XAS spectra (XANES and EXAFS) have been employed, to constrain the Fe structural role (oxidation state, coordination number, bond distances) in phonolitic glasses as a function of synthesis temperature (T), [Na/(Na+K)] ratio (= 0.0, 0.25, 0.5, 0.75, 1.0) and redox state. We verify that at constant oxygen fugacity, the [Na/(Na+K)] ratio has a strong effect on the Fe3+/(Fe2++Fe3+) ratio. The results obtained are parameterized and discussed in terms of the contrasting effects of T, fO2, and alkali ratio.

The effect of the [Na/(Na+K)] ratio on Fe speciation in phonolitic glasses

CICCONI, MARIA RITA;GIULI, Gabriele;PARIS, Eleonora;
2015-01-01

Abstract

Natural iron-bearing sodic phonolitic melts represent an extreme compositional range of the effect of the [Na/(Na+K)] ratio on the geochemical behavior of Fe in volcanic systems. Yet phonolitic melts have not been well investigated. The glasses studied here have been synthesized from liquids equilibrated over a range of oxygen fugacity conditions [log10(fO2) from –0.68 to –11] to elucidate the role of the alkali ratio in influencing the local environment around both divalent and trivalent Fe. In this study, the Fe K-edge XAS spectra (XANES and EXAFS) have been employed, to constrain the Fe structural role (oxidation state, coordination number, bond distances) in phonolitic glasses as a function of synthesis temperature (T), [Na/(Na+K)] ratio (= 0.0, 0.25, 0.5, 0.75, 1.0) and redox state. We verify that at constant oxygen fugacity, the [Na/(Na+K)] ratio has a strong effect on the Fe3+/(Fe2++Fe3+) ratio. The results obtained are parameterized and discussed in terms of the contrasting effects of T, fO2, and alkali ratio.
2015
262
File in questo prodotto:
File Dimensione Formato  
15_Cicconi_AM_Phonolites.pdf

solo gestori di archivio

Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/385781
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 25
social impact