Microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix leucine zipper (bHLH-LZ) transcription factor, which regulates the differentiation and development of melanocytes and pigment cell-specific transcription of the melanogenesis enzyme genes. Though multiple splice variants of MITF have been reported in humans, mice and other vertebrate species, in merino sheep (Ovis aries), MITF gene splicing has not yet been investigated until now. To investigate the sheep MITF isoforms, the full length mRNA/cDNAs from the skin of merino sheep were cloned, sequenced and characterized. Reverse transcriptase (RT)-PCR analysis and molecular prediction revealed two basic splice variants with (+) and without (-) an 18 bp insertion viz. CGTGTATTTTCCCCACAG, in the coding region (CDS) for the amino acids 'ACIFPT'. It was further confirmed by the complete nucleotide sequencing of splice junction covering intron-6 (2463 bp), wherein an 18bp intronic sequence is retained into the CDS of MITF (+) isoform. Further, full-length cDNA libraries were enriched by the method of 5' and 3' rapid amplification of cDNA ends (RACE-PCR). A total of seven sheep MITF splice variants, with distinct N-terminus sequences such as MITF-A, B, E, H, and M, the counterparts of human and mouse MITF, were identified by 5' RACE. The other two 5' RACE products were found to be novel splice variants of MITF and represented as 'MITF truncated form (Trn)-1, 2'. These alternative splice (AS) variants were illustrated using comparative genome analysis. By means of 3' RACE three different MITF 3' UTRs (625, 1083, 3167bp) were identified and characterized. We also demonstrated that the MITF gene expression determined at transcript level is mediated via an intron-6 splicing event. Here we summarize for the first time, the expression of seven MITF splice variants with three distinct 3' UTRs in the skin of merino sheep. Our data refine the structure of the MITF gene in sheep beyond what was previously known in humans, mice, dogs and other mammals.
Alternative splicing of the sheep MITF gene: Novel transcripts detectable in skin
PEDICONI, Dario;RENIERI, Carlo;LA TERZA, Antonietta
2014-01-01
Abstract
Microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix leucine zipper (bHLH-LZ) transcription factor, which regulates the differentiation and development of melanocytes and pigment cell-specific transcription of the melanogenesis enzyme genes. Though multiple splice variants of MITF have been reported in humans, mice and other vertebrate species, in merino sheep (Ovis aries), MITF gene splicing has not yet been investigated until now. To investigate the sheep MITF isoforms, the full length mRNA/cDNAs from the skin of merino sheep were cloned, sequenced and characterized. Reverse transcriptase (RT)-PCR analysis and molecular prediction revealed two basic splice variants with (+) and without (-) an 18 bp insertion viz. CGTGTATTTTCCCCACAG, in the coding region (CDS) for the amino acids 'ACIFPT'. It was further confirmed by the complete nucleotide sequencing of splice junction covering intron-6 (2463 bp), wherein an 18bp intronic sequence is retained into the CDS of MITF (+) isoform. Further, full-length cDNA libraries were enriched by the method of 5' and 3' rapid amplification of cDNA ends (RACE-PCR). A total of seven sheep MITF splice variants, with distinct N-terminus sequences such as MITF-A, B, E, H, and M, the counterparts of human and mouse MITF, were identified by 5' RACE. The other two 5' RACE products were found to be novel splice variants of MITF and represented as 'MITF truncated form (Trn)-1, 2'. These alternative splice (AS) variants were illustrated using comparative genome analysis. By means of 3' RACE three different MITF 3' UTRs (625, 1083, 3167bp) were identified and characterized. We also demonstrated that the MITF gene expression determined at transcript level is mediated via an intron-6 splicing event. Here we summarize for the first time, the expression of seven MITF splice variants with three distinct 3' UTRs in the skin of merino sheep. Our data refine the structure of the MITF gene in sheep beyond what was previously known in humans, mice, dogs and other mammals.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.