We describe the Ziegler spectrum of a Bézout domain B = D+XQ[X] where D is a principal ideal domain and Q is its field of fractions, in particular we ccompute the Cantor-Bendixson rank of the space. Using this, we prove the decidability of the theory of B-modules when D is "sufficiently" recursive.

Decidability of modules over a Bézout domain D+XQ[X] with D a principal ideal domain and Q its field of fractions

TOFFALORI, Carlo
2014-01-01

Abstract

We describe the Ziegler spectrum of a Bézout domain B = D+XQ[X] where D is a principal ideal domain and Q is its field of fractions, in particular we ccompute the Cantor-Bendixson rank of the space. Using this, we prove the decidability of the theory of B-modules when D is "sufficiently" recursive.
2014
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/353988
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact