Let (M, g) be a complete Riemannian manifold, and let Ω ⊂ M be an open subset whose closure is homeomorphic to a disk or to an annulus. In this note we discuss some multiplicity results for orthogonal geodesic chords in Ω, namely geodesics in Ω starting from and arriving orthogonally to the boundary of Ω. This kind of problems has applications to multiplicity results for brake orbits and homoclinics, via Maupertuis principle.

Multiplicity results for orthogonal geodesic chords and applications

GIAMBO', Roberto;GIANNONI, Fabio;
2014-01-01

Abstract

Let (M, g) be a complete Riemannian manifold, and let Ω ⊂ M be an open subset whose closure is homeomorphic to a disk or to an annulus. In this note we discuss some multiplicity results for orthogonal geodesic chords in Ω, namely geodesics in Ω starting from and arriving orthogonally to the boundary of Ω. This kind of problems has applications to multiplicity results for brake orbits and homoclinics, via Maupertuis principle.
2014
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/353581
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact