Regularity properties of intrinsic objects for a large class of Stein Manifolds, namely of Monge-Ampere exhaustions and Kobayashi distance, is interpreted in terms of modular data. The results lead to a construction of an infinite dimensional family of convex domains with squared Kobayashi distance of prescribed regularity properties. A new sharp refinement of Stoll's characterization of C^n is also given.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Modular data and regularity of Monge–Ampère exhaustions and of Kobayashi distance |
Autori: | |
Data di pubblicazione: | 2014 |
Rivista: | |
Abstract: | Regularity properties of intrinsic objects for a large class of Stein Manifolds, namely of Monge-Ampere exhaustions and Kobayashi distance, is interpreted in terms of modular data. The results lead to a construction of an infinite dimensional family of convex domains with squared Kobayashi distance of prescribed regularity properties. A new sharp refinement of Stoll's characterization of C^n is also given. |
Handle: | http://hdl.handle.net/11581/352583 |
Appare nelle tipologie: | Articolo |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.