All systems in nature have one thing in common: they process information. Information is registered in the state of a system and its elements, implicitly and invisibly. As elements interact, information is transferred. Indeed, bits of information about the state of one element will travel – imperfectly – to the state of the other element, forming its new state. This storage and transfer of information, possibly between levels of a multi level system, is imperfect due to randomness or noise. From this viewpoint, a system can be formalized as a collection of bits that is organized according to its rules of dynamics and its topology of interactions. Mapping out exactly how these bits of information percolate through the system could reveal new fundamental insights in how the parts orchestrate to produce the properties of the system. A theory of information processing would be capable of defining a set of universal properties of dynamical multi level complex systems, which describe and compare the dynamics of diverse complex systems ranging from social interaction to brain networks, from financial markets to biomedicine. Each possible combination of rules of dynamics and topology of interactions, with disparate semantics, would reduce to a single language of information processing.

IPCS13: Information Processing and Complex Systems, 18th September, Barcelona

MERELLI, Emanuela;
2013

Abstract

All systems in nature have one thing in common: they process information. Information is registered in the state of a system and its elements, implicitly and invisibly. As elements interact, information is transferred. Indeed, bits of information about the state of one element will travel – imperfectly – to the state of the other element, forming its new state. This storage and transfer of information, possibly between levels of a multi level system, is imperfect due to randomness or noise. From this viewpoint, a system can be formalized as a collection of bits that is organized according to its rules of dynamics and its topology of interactions. Mapping out exactly how these bits of information percolate through the system could reveal new fundamental insights in how the parts orchestrate to produce the properties of the system. A theory of information processing would be capable of defining a set of universal properties of dynamical multi level complex systems, which describe and compare the dynamics of diverse complex systems ranging from social interaction to brain networks, from financial markets to biomedicine. Each possible combination of rules of dynamics and topology of interactions, with disparate semantics, would reduce to a single language of information processing.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11581/332786
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact