BACKGROUND: Analysis of the innervation pattern of the thoracic duct in young and elderly human subjects has been performed. The subdivision of the vessels in cervical and lumbar region were taken in consideration. MeTHODS AND RESULTS: Immunostaining for general nerve fibers with a PGP 9.5 marker disclosed a diffuse innervation of the thoracic duct in young subjects, which was strongly reduced in elderly subjects. In young subjects, tyrosine hydroxylase (TH) and neuropeptide Y (NPY) immunoreactive fibers, markers of noradrenergic postganglionic sympathetic fibers, were frequent; choline acetyltransferase (ChAT) immunoreactive fibers, marker of cholinergic parasympathetic nerve fibers, were also well represented. Therefore, the influence of sympathetic and parasympathetic nerve systems on the thoracic duct can be confirmed. The immunoreactivity of vasoactive intestinal peptide (VIP), a neuropeptide frequently present in cholinergic parasympathetic nerve fibers, was scarcely present. Dopamine-positive fibers were observed in few short nerve fibers. Substance P (SP)-positive fibers were widely distributed in the medial and intimal smooth muscle layers, suggesting their involvement as contractile modulating fibers and sensitive fibers. In elderly subjects, an evident reduction of all specific nerve fibers analyzed was detected, the ChAT-positive fibers being the most affected. CONCLUSIONS: The lymphatic vessel thoracic duct is able to regulate hydrodynamic lymph flow by intrinsic contraction of its smooth muscle layer. Therefore, analysis of the thoracic duct innervation pattern may be important in assessing the regulation of vessel contraction. These findings called attention to the reduction of lymphatic drainage functionality affecting fluid balance in the elderly.
Analysis of nerve supply pattern in thoracic duct in young and elderly men.
MIGNINI, Fiorenzo;
2012-01-01
Abstract
BACKGROUND: Analysis of the innervation pattern of the thoracic duct in young and elderly human subjects has been performed. The subdivision of the vessels in cervical and lumbar region were taken in consideration. MeTHODS AND RESULTS: Immunostaining for general nerve fibers with a PGP 9.5 marker disclosed a diffuse innervation of the thoracic duct in young subjects, which was strongly reduced in elderly subjects. In young subjects, tyrosine hydroxylase (TH) and neuropeptide Y (NPY) immunoreactive fibers, markers of noradrenergic postganglionic sympathetic fibers, were frequent; choline acetyltransferase (ChAT) immunoreactive fibers, marker of cholinergic parasympathetic nerve fibers, were also well represented. Therefore, the influence of sympathetic and parasympathetic nerve systems on the thoracic duct can be confirmed. The immunoreactivity of vasoactive intestinal peptide (VIP), a neuropeptide frequently present in cholinergic parasympathetic nerve fibers, was scarcely present. Dopamine-positive fibers were observed in few short nerve fibers. Substance P (SP)-positive fibers were widely distributed in the medial and intimal smooth muscle layers, suggesting their involvement as contractile modulating fibers and sensitive fibers. In elderly subjects, an evident reduction of all specific nerve fibers analyzed was detected, the ChAT-positive fibers being the most affected. CONCLUSIONS: The lymphatic vessel thoracic duct is able to regulate hydrodynamic lymph flow by intrinsic contraction of its smooth muscle layer. Therefore, analysis of the thoracic duct innervation pattern may be important in assessing the regulation of vessel contraction. These findings called attention to the reduction of lymphatic drainage functionality affecting fluid balance in the elderly.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.